MCT Scopes Awards at Haematology Association of Ireland Meeting 2018

MCT was well represented at this year’s Haematology Association of Ireland meeting in Cork. A number of PhD students and Post-docs from the Irish Centre for Vascular Biology, has their work selected for presentation at this prestigious annual meeting. Moreover, three of these presentations were awarded prizes;

Presidents Prize: Clive Drakeford, PhD student
Best Scientific Oral Presentation: Dr Sean McCluskey, PostDoc
Best Scientific Poster Presentation: Soracha Ward, PhD student

Soracha Ward (PhD student with Prof. James O’Donnell) presenting her poster

Additionally, two PhD students, Sean Patmore and Aisling Rehill, scored in the top 20% of submitted abstracts and had their work selected for oral presentations at the meeting.

Dr. Sean McCluskey [post doc with Roger Preston] and Clive Drafeford [student with Prof. James O’Donnell]
Congratulations to all involved!

MCT Hosts Intergenerational Day Lab Tour

On Thursday 4 October, the Equality, Diversity and Inclusion (EDI) unit welcomed almost 30 family members of staff to RCSI St Stephen’s Green campus for the first-ever RCSI Intergenerational Day. Throughout the day, the guests had the opportunity to learn about a variety of activities at RCSI. MCT hosted a lab tour where guests were introduced to several MCT Principal Investigators who discussed their work and demonstrated how their research is carried out. Four stations focusing on the themes of Breast Cancer, Novel Cancer Therapies, Multiple Sclerosis and Circadian Rhythm and its Impact on Health were featured, led by Dr Sudipto Das, Dr Maria Morgan, Prof Tracy Robson, Dr Claire McCoy and Dr Annie Curtis. Guests were guided around the labs by the MCT Operations Team John O’Brien, Olwen Foley, Anne Grady, Mary Ledwith and Seamus McDonald. Scientists Stephanie Annett; Gillian Moore; Conor Duffy; Chiara DeSanti; Mariana  Cervantes Silva, Richard Carroll and George Timmons also volunteered on the day.
Prof Gianpiero Cavalleri contributed to the day’s activities with a talk on the Irish DNA Atlas. The MCT research projects presented were a hit with our audience evident by the number of attendees, their level of engagement and thoughtful questions. Guests included relatives of MCT staff including Mr Joseph Tighe father of Orna and Mrs McDonald & Curtis – mothers of Seamus and Annie respectively. Julia Morrow of the EDI unit commented that ‘between the MCT lab visit and Gianpiero’s talk, more than one guest commented they wish they could go back and have a more science-oriented career!’ It’s never too late we say!
Written by Maria Morgan

Regenerative inflammation in the CNS: Innate and adaptive immune mechanisms in myelin repair

MCT Research Seminars – October, 8th 2018

Dr Dombrowski’s research focuses on immune mechanisms in tissue damage and repair. Tissue damage can occur in infectious (e.g. bacteria, virus, fungi) or sterile settings (e.g. trauma, autoimmune attack). The Dombrowski group is primarily interested in the underlying immunological mechanisms that direct tissue repair and regeneration with the goal to identify novel therapeutic targets for immune-mediated diseases such as Multiple Sclerosis (MS).
Despite driving pathology in many diseases, the immune system is required for tissue regeneration. Innate immune receptors sense disruption of tissue homeostasis initiating a regenerative immune response that leads to the repair of the damaged tissue. Our central goal is to elucidate the mechanisms of regenerative inflammation, in particular, the role of the innate immune system in myelin regeneration in MS.
In MS the myelin sheath that covers nerve fibres is damaged due to an autoimmune attack against proteins in the myelin sheath. As a result, the nerve fibres die leading to a loss of function, which can result in paralysis and other neurodegenerative symptoms. There is no cure for MS to date and there are no therapies that can restore damaged myelin in order to prevent nerve loss.
Current projects of the group investigate the function of inflammasomes during myelin damage and regeneration in the central nervous system (CNS) and the effects of IL-1 cytokines on oligodendrocyte progenitor cells, stem cell-like cells in the CNS that produce myelin. Other projects in the group investigate the role of inflammasomes in regenerative inflammation after infectious tissue damage and the role of e-cigarette vapour as an inflammasome activator. Dr Dombrowski has published her work in high-impact journals (e.g. Nature Neuroscience 2017) and her research has been recognized in prestigious awards including an Early Career Fellowship from The Leverhulme Trust and the invitation to the 64th Lindau Nobel Laureate Meeting for Physiology and Medicine as one of ten UK representatives.

Cellular and molecular models for epigenetic studies of human disease

MCT Research Seminars – 20th September at 4.00pm

My research group focusses on understanding the models of genetic susceptibility to human disease, especially those affecting children. Primarily, we focus on the study of the epigenome, as a regulator of transcriptional activity that can mediate memory of prior events, whether developmental cues or environmental perturbations.

The research is facilitated by Einstein’s Center for Epigenomics, its Epigenomics Shared Facility and the Computational Epigenomics Group, where the development of the Wasp System software cyberecosystem is nurtured.

In essence, our research involves the targeting mechanisms of DNA methylation, the role of non-canonical nucleic acid structures and the heritability of chromatin states. We have been guided by our epigenomics studies to consider the broader possibility that mosaicism for cellular events is a much more common cause of human disease phenotypes than currently appreciated. We are therefore expanding our research interests to encompass genetic mosaicism, with an interest in isolated congenital malformations and covert chromosomal aneuploidy.

Targeting the microbial pharmacists within us to lower blood pressure

MCT Research Talks – September, 17th 2018

Dr Francine Marques is a National Heart Foundation Future Leader Fellow at the Baker Heart and Diabetes Institute, and a former National Health and Medical Research Council (NHMRC) and Heart Foundation Early Career Fellow (2013-2017). She completed a BSc with first class Honours in Genetics and a Masters in Molecular Biology and Genetics, at the Federal University of Rio Grande do Sul in Brazil. She then moved to Australia, where she was offered a competitive Endeavour International Postgraduate Research Scholarship (EIPRS) to complete a PhD at the University of Sydney. Dr Marques was awarded her PhD in 2012, in the field of the molecular genetics of hypertension. Her research interests include finding new therapies and early markers to prevent cardiovascular disease, in particular high blood pressure and heart failure. Her research has shown that a diet reach in fibre is able to lower blood pressure and improve heart function through the modulation of the bacteria in our gut. Dr Marques has published >50 peer-reviewed papers, including in the journals Circulation, Molecular Psychiatry and Nature Reviews Cardiology. She receives funding from the NHMRC, the National Heart Foundation and the Foundation for High Blood Pressure Research. She is part of the executive committee of the High Blood Pressure Research Council of Australia as a co-program manager and part of the mentoring committee of the International Society of Hypertension. She is also an adjunct senior lecturer at Monash University and Federation University Australia.

A new mechanism by which the body clock controls the inflammatory response from macrophages

The Curtis lab from MCT in partnership with the O’Neill lab at Trinity College have revealed insights into how the body clock controls the inflammatory response, which may open up new therapeutic options to treat excess inflammation in conditions such as asthma, arthritis and cardiovascular disease. By understanding how the body clock controls the inflammatory response, we may be able to target these conditions at certain times of the day to have the most benefit. These findings may also shed light on why individuals who experience body clock disruption such as shift workers are more susceptible to these inflammatory conditions.
The body clock, the timing mechanism in each cell in the body, allows the body to anticipate and respond to the 24-hour external environment. Inflammation is normally a protective process that enables the body to clear infection or damage, however, if left unchecked can lead to disease. The new study published in the Proceedings of the National Academy of Sciences (PNAS), a leading international multidisciplinary scientific journal.
Dr Annie Curtis, Research Lecturer in the Department of Molecular and Cellular Therapeutics at RCSI and senior author, explained that: “Macrophages are key immune cells in our bodies which produce this inflammatory response when we are injured or ill. What has become clear in recent years is that these cells react differently depending on the time of day that they face an infection or damage, or when we disrupt the body clock within these cells”.

Some members of the Curtis lab involved in this project: Dr. Richie Carroll (far left), Dr. Annie Curti,  Dr. Mariana Cervantes, George Timmons (far right)

Dr. Jamie Early, the first author on the study, said: “We have made a number of discoveries into the impact of the body clock in macrophages on inflammatory diseases such as asthma and multiple sclerosis. However, the underlying molecular mechanisms by which the body clock precisely controls the inflammatory response were still unclear. Our study shows that the central clock protein, BMAL1 regulates levels of the antioxidant response protein NRF2 to control the inflammatory response from macrophages.
“The findings although at a preliminary stage, offers new insights into the behaviour of inflammatory conditions such as arthritis and cardiovascular disease which are known to be altered by the body clock”, added Dr Early.
Funded by Science Foundation Ireland, the research was undertaken in collaboration between RCSI, Trinity College Dublin and the Broad Institute in Boston, USA.

Here is the  link to the paper titled ” Circadian clock protein BMAL1 regulates IL-1β in macrophages via NRF2

Annie Curtis

RCSI StAR International Summer Internship Programme

This summer RCSI welcomed our very first cohort of ten international students as part of our Inaugural RCSI StAR International Summer Internship Programme. Students came from Washington University, Cornell University, University of California, Berkeley, University of Oregon, Queen’s University Belfast, University of Liverpool and TCD to spend two months in laboratories around RCSI. To mark the end of the programme we held a research symposium where students show-cased their research and experience. It was a huge success, with Kieran White, University of Liverpool winning the overall prize for the best presentation on ‘Nanotherapeutics for Glioblastoma’ (supervisor Professor Annett Byrne). Kieran has already accepted a PhD position with Prof Byrne on her GlioTrain programme. Thanks to Prof Darran O’Connor and Prof Tracy Robson (MCT) for leading this initiative.

We will also be running the StAR summer internship next year – stay tuned. Here is the link to last year’s programme which will be updated within the next month: http://www.rcsi.ie/starugprogramme

 

Research Summer School Programme 2018

A fantastic few weeks of research is now completed, culminating in the Wrap Up Symposium on Friday, July 27th, 2018. This year not only had we our own students from RCSI but we also welcomed undergraduate students from Hoshi University, Tokyo, Japan; Soochow University, Suzhou, China; the RCSI StAR Summer Internship Programme; FutureNeuro and the Faculty of Dentistry. There was great stuff being done on a number of fronts, not only in the labs but also out on our clinical sites as well as an increase in the number of students involved in some fab systematic reviews. It was incredible to see the breadth of research done by our undergraduate students in such a short period of time. It is a credit to them, their research supervisors and teams. We eagerly look forward to next year’s programme.

Some insights from student’s perspective:

“It was educational in a different way; I expected to learn more about the disease I am working with get an outcome but instead, I feel like I am better equipped to analyse papers and data and methods that are very useful in the future as a clinician.”

“Amazing! Big thanks to Gill and Sarah O’Neill”

“It was a knowledgeable and valuable learning experience that was never dull in any way.”

Reported by Sarah O’Neill

Mechanobiology – the ‘dark matter’ of cancer and immunity

MCT research seminar

The way we act very much depends on our surroundings; not the least on the weather conditions. In a similar way, cells in our body very much depend on what is going on around them. It has been known for a long time that the specific niches in which cells reside impact on the cellular phenotype. While most researchers have looked at chemical signals – either released into the environment or reflecting the composition of the extracellular matrix – it is becoming increasingly clear that also physical properties, such as stiffness and topography, are sensed by a wide variety of cells and influences their decisions.

It is our pleasure to welcome Prof Viola Vogel this Monday at RCSI for the MCT research seminar.

July 16th, 4.00 pm, Albert Lecture Theatre “How does the mechanobiology of extracellular matrix steer cancer progression?

Prof Vogel and her laboratory at ETH Zurich have pioneered the field of mechanobiology. Her earlier work focused on how proteins act as mechanochemical switches to transduce mechanical signals from the ECM into the cell. More recent work addresses the importance of tissue strain in the development of tumours. Prof Vogel will also share her latest results on how physical constraints affect decision making of macrophages.

Anyone who is interested in getting a different viewing angle on cancer and immunity is heartily invited! To steer your personal decision making towards attending the talk, refreshments will be served from 3.30 pm on in the Atrium.

Ingmar Schoen

Many common psychiatric conditions are deeply connected on a genetic level

Global collaborations can help answer fundamental questions that are resistant even to national endeavours. Drs Mark McCormack and Christopher Whelan (MCT) and Professors Kieran Murphy (Psychiatry) and John Waddington (Emeritus, MCT) have participated in an important international study, the results of which have just been published in Science [2018 Jun 22;360(6395)] under the auspices of the Brainstorm Consortium. This landmark study, ‘Analysis of shared heritability in common disorders of the brain‘, analyses genetic data assembled globally from 265,218 patients having one of 25 neuropsychiatric disorders and 784,643 control participants, together with 1,191,588 individuals having 17 other, potentially relevant characteristics. Psychiatric disorders share an unexpected degree of common genetic risk: for example, genes associated with risk for schizophrenia are also associated, to varying extents, with significant risk for bipolar disorder, major depressive disorder, autism spectrum disorder, attention deficit/hyperactivity disorder, obsessive-compulsive disorder and anorexia nervosa; in contrast, neurological disorders such as epilepsy, stroke, Parkinson’s disease, migraine and multiple sclerosis appear more genetically distinct from one another. This highlights the importance of common genetic variation as a risk factor across psychiatric disorders.

https://www.irishtimes.com/news/health/many-psychiatric-disorders-have-common-genetic-links-major-study-1.3539455

 John L. Waddington PhD, DSc, FBPhS, MRIA
Professor Emeritus