Dr Annie Curtis wins L’Oréal-UNESCO Fellowship For Women in Science

Our congratulations to Dr Annie Curtis with L’Oréal-UNESCO Fellowship For Women in Science Award! Well done!

She was awarded a prestigious L’Oréal-UNESCO For Women in Science 2017 Fellowship at a ceremony held at the Royal Society in London on May 5th.

She was one of five winners of these fellowships and the only Irish winner this year. The fellowship will support her research into understanding the precise mechanisms by which the body clock restrains inflammation from a key immune cell called the macrophage.

Professor Tracy Robson said: “This is a fantastic achievement and I am proud to congratulate Dr Annie Curtis on this highly competitive award for which there were nearly 300 applicants. It is a great testament to her research within the recently established Immuno-Clock Lab. Annie will be an excellent ambassador for Women in Science and this award reflects the world-class research ongoing at RCSI. Indeed the only Irish winners of these For Women in Science fellowships now reside within this institution.”

Recipients of L’Oréal-UNESCO For Women in Science 2017 Fellowship. Courtesy of RCSI Communications Department

The recipients of L’Oréal-UNESCO For Women in Science 2017 Fellowship:

  • Dr Annie Curtis, Royal College of Surgeons in Ireland, the human body clock and inflammation
  • Dr Radha Boya, University of Manchester, Nanoscience
  • Dr Manju Kurian, UCL Great Ormond Street, Neurology
  • Dr Bethan Psaila, University of Oxford, Haematology
  • Dr Priya Subramanian, University of Leeds, Mathematics

RCSI Communications Department

 

Decoding neuroblastoma microenvironment

MCT Research Talks – 24th April 2017

The main challenge in treating high-risk neuroblastoma is to combat tumour metastasis and development of resistance to multiple chemotherapeutic drugs. In the native tissue, cancer cells are surrounded by a three-dimensional (3D) microenvironment which provides biological and physical support and determines disease initiation, progression, patient prognosis and response to treatment. The conventional two-dimensional (2D) cell culture lacks this feature resulting in discrepancies between in vitro and in vivo results. Current neuroblastoma studies employ either 2D cell culture systems or murine models or alternatively a mix of both.

In collaboration with Dr Caroline Curtin and Prof Fergal O’Biren (TERG), we decided to bridge the gap between 2D culture and in vivo tumours in neuroblastoma research by developing a tissue-engineered cell culture model of neuroblastoma. This project is supported by a pilot grant from Neuroblastoma UK.

To understand what signalling pathways are activated in 2D, 3D and in vivo neuroblastoma models, we decided to look closer at the differences between conventional 2D neuroblastoma cells and their xenografts. This way we hope to find those targets that are activated in both tumour microenvironment and the 3D tissue engineered models. Ciara and Larissa have begun this search by profiling xenograft samples with a panel of antibodies. Ciara became particularly fascinated by the elevated levels of c-jun, TCF1 and LEF1 in cisplatin-resistant neuroblastoma xenografts suggesting that the development of cisplatin resistance in neuroblastoma may be accompanied by activation of the wnt/b-catenin pathway in vivo. Larissa identified that cisplatin-resistant neuroblastoma cells secrete chromogranin A (CgA) at levels higher that cisplatin-sensitive cells. CgA levels also correlated with increased vascularisation and volume of murine orthotopic neuroblastoma xenografts. Altogether it suggests that CgA can be used as a marker of neuroblastoma cell growth both in vitro and in vivo.

Olga Piskareva

Japan Society for Promotion of Science – Short-term post-doctoral fellowship

Following a workshop conducted at Hoshi University, Tokyo, Japan organized through the ISCA-Japan initiative funded by SFI in October, 2015 a successful collaborative initiative was established between Dr. Sudipto Das (MCT, RCSI) and Prof. Hiroko Ikeda (Department of Neurophysiology, Hoshi University) to investigate the role of epigenetic modifications like DNA methylation in driving a neuronal dysfunction phenotype associated with Diabetes mellitus (DM). Moving this collaboration forward with support from his collaborators at Hoshi University Dr. Sudipto Das has recently received a prestigious short-term post-doctoral fellowship to further his work at Hoshi University from the Japan Society for Promotion of Science (JSPS), which would essentially cover travel, subsistence and a research consumable allowance of 562,000 Japanese Yen. As a part of this fellowship, Dr. Das will travel to Japan for a period of 1.5 months in January 2018. The successful completion of the proposed project as a part of this proposal will for the first time allow the scientific community to understand as to how epigenetic modifications like DNA methylation impact on neurological dysfunction in endocrine

The successful completion of the proposed project as a part of this proposal will for the first time allow the scientific community to understand as to how epigenetic modifications like DNA methylation impact on neurological dysfunction in endocrine related disorders such as DM, thus opening up avenues to utilize this modification to potentially predict such conditions in DM patients.

Sudipto Das

The circadian protein BMAL1 in myeloid cells is a negative regulator of allergic asthma

Asthma is of particular relevance to the area of circadian control of immunity, since it is a disease with very strong clinical evidence demonstrating regulation by circadian variation. Airway hypersensitivity and asthma attacks are more common at night in humans. The molecular basis for this is unknown and no model of asthma in animals with genetic distortion of the molecular clock exists.

Asthma is under strong circadian variation. Asthma symptoms worsen at night, particularly in the early hours of the morning. Lung function fluctuates in healthy individuals over 24 h period and these fluctuations are even more pronounced in asthmatics.

In this study, we showed that mice lacking the main clock transcription factor BMAL1 in myeloid cells have increased lung inflammation demonstrated by higher numbers of eosinophils and increased IL-5 (key pathogenic cytokine in asthma that recruits eosinophils).This suggests that Bmal1 is a potent negative regulator, in myeloid cells in the context of allergic asthma. Our findings might explain the increase in asthma incidents during the night in humans when BMAL1 expression is low.

Dr. Zbigniew Zaslona from TCD (pictured here) was the lead author on the study. Both Dr. Annie Curtis (MCT) and Prof. Luke O’Neill (TCD) were joint senior authors on the paper.

The circadian protein BMAL1 in myeloid cells is a negative regulator of allergic asthma.

Zaslona Z, Case S, Early JO, Lalor SJ, McLoughlin RM, Curtis AM*, O’Neill LA* – Both authors contributed equally to this study.

Am J Physiol Lung Cell Mol Physiol. 2017 Mar 23:ajplung.00072.2017. doi: 10.1152/ajplung.00072.2017. [Epub ahead of print]

International Research and Education

Prof Tracy Robson (MCT), Prof Jochen Prehn (Physiology & Medical Physics) and Dr Darran O’Connor (MCT) have recently returned from 1 week at the College of Pharmaceutical Sciences, Soochow University, Suzhou, China where they participated in a workshop with faculty to explore research collaborations and future joint funding applications under the newly announced SFI-NSF Partnerships for International Research and Education. Supported by an Erasmus+ programme coordinated by Prof Marc Devocelle (Department of Pharmaceutical and Medicinal Chemistry), the workshop involved presentations from RCSI and Soochow investigators describing their work and discussion to identify areas of synergy. Afternoon lectures by RCSI faculty were opened to postgraduate and postdoctoral researchers from Soochow, leading to a vigorous and stimulating discussion and Prof Xinliang Mao from Soochow will visit RCSI next month to further strengthen future collaborative research opportunities. 

Left to Right: Prof Tracy Robson (MCT), Prof Jochen Prehn (Physiology & Medical Physics) and Dr Darran O’Connor (MCT)

At the invitation of the President of the British Pharmacological Society, Professor John Waddington (Emeritus, RCSI) has been elected to Fellowship of the Society; this is in recognition of his career contributions to research, education and service in the discipline of pharmacology, not just in Ireland but globally. He has recently returned from 3 weeks at the College of Pharmaceutical Sciences, Soochow University, China, under his joint appointment as a Professor of Pharmacology. While there, he continued collaborative research, gave undergraduate lectures and fostered further joint endeavours between RCSI and Soochow University, which is in the top 5% of Chinese research universities.   

Tracy Robson

Irish Association For Cancer Research Meeting 2017

Irish Association for Cancer Research – Annual Meeting takes place at Newpark Hotel, Kilkenny on Thursday 23 and Friday 24 February 2017.

MCT cancer researchers secured oral presentations at different sessions. Prof Ray Stallings is a guest speaker at the Plenary Session focused on challenges in childhood cancers. He will be discussing ‘Modulation of neuroblastoma phenotype with epigenetically regulated miRNAs’.

Stephanie Annett will be giving a talk ‘FKBPL as a novel prognostic biomarker and therapeutic agent in high-grade serous ovarian cancer’ at Proffered Paper Session on Thursday morning. Two Irish Cancer Society funded PhD students will be discussing their findings at the Irish Cancer Society Scholar and Fellow Presentation session. Louise Walsh – ‘RNA sequencing identifies bromodomain proteins as a therapeutic strategy for invasive lobular carcinoma’ and Brian Mooney – ‘Expression of the cocaine- and amphetamine-regulated transcript recruits BAF chromatin remodelling complexes to the estrogen receptor’.

Good luck to our presenters!

Olga Piskareva

 

 

Diagnostic gene sequencing in adults with epilepsy and intellectual disability

MCT Research Talks – 20th February 2017

Sinead Heavin reports

Sinead Heavin, PhD Post-Doctoral Researcher

Epilepsy is a common neurological disorder that affects ~40,000 people in Ireland. There are many different types of seizures which are caused by uncontrolled electrical impulses in the brain. Anti-epileptic drugs control seizures for ~50% of people with epilepsy but up to ~30% of patients remain uncontrolled despite treatment with multiple drugs. Epilepsy is caused by a number of factors include stroke, trauma and infections. However, more recently we have learned that epilepsy can be caused by genetic mutations. Some epilepsies are heritable while others arise de-novo. Many patients with an intellectual disability (ID) also have epilepsy. Many of these patients lack a specific diagnosis due to limited testing and available investigations. We sequenced a cohort of 99 adult patients with epilepsy and ID on a custom gene panel of ~150 genes. A likely pathogenic variant was identified in 20 patients in 19 different genes, including SCN1A, DCX and DEPDC5, well-known epilepsy genes. Furthermore, we identified copy number variants in two patients which are likely causative. Further work is needed to investigate the phenotype-genotype correlations identified in this study and any potential treatment options that may arise.

MCT researchers shed light on the ancestry of the Irish Travellers from the perspective of DNA

Edmund Gilbert reports

A new study, led by Prof. Gianpiero Cavalleri at MCT and Prof. Jim Wilson at the University of Edinburgh, has examined the population history of the Irish Travellers and has confirmed that the Irish Travellers share a common Irish origin with the settled Irish population. The work has also for the first time estimated the date which this divergence occurred.

A roadside camp in County Mayo 1972. Courtesy of George Gmelch

The Irish Travellers are a small nomadic population, making up about 0.6% of the total population on the island of Ireland, or between 29,000 and 40,000 individuals. Within the population cousin marriages (consanguineous marriages) are common, and the population is socially isolated from the surrounding settled Irish population.
The researchers, who also include MCT PhD student Edmund Gilbert, Shai Carmi of the Hebrew University of Jerusalem, and Sean Ennis of University College Dublin, used SNP-array based genotype data to compare the population genetics of the Irish Travellers to neighbouring Irish and British populations, as well as world-wide groups and European Roma Gypsies.
The study found that although the Irish Travellers were genetic closest to the settled Irish population, they showed significant differences. The study also confirmed the lack of recent shared genetic ancestry between the Irish Travellers and Roma Gypsies. The Irish Travellers, therefore, represent a subset of Irish genetic diversity, and the significant differences can be attributed to genetic drift, brought on by hundreds of years of genetic isolation and a decreasing population size. The analysis showed Irish Travellers also exhibit within-population sub-structure with four apparently distinct groups emerging, and interestingly these groups mirror different forms of the Shelta language and sociological groups within the Irish Travellers.

Galway John Ward making tinware and Galway 1971. Courtesy of George Gmelch

The dating of the origin of the Irish Travellers is of considerable interest, but this is a distinct date from the genetic origins of each population. This study has estimated a time of genetic divergence of the Irish Travellers and the settled Irish population using genomic tracts of shared identity. This method estimated the divergence to about 12 generations (360 years) ago, which is far older than common belief that the Irish Traveller population arose from the time of the Great Famine. The size of the dataset limited the authors to exploring the relatively simple model of one divergence event, future work is required to expand the study to explore more complex demographic models. The Irish Traveller population was shown to have high proportions of the genome where both maternal and paternal copies are identical, at similar levels to other consanguineous populations around the world.
The research was also welcomed by author and Traveller activist, Michael McDonagh said, “As a Traveller who has spoken on the history and identity of Irish Travellers to many groups ranging from children to academics, you sometimes rely on anecdotal information in trying to put across a serious message about Irish Traveller history. I am delighted that now we have qualified evidence that substantiates the argument I have made for many years, which is that Travellers did not descend from the Famine in Ireland. This research allows us to bring Irish Traveller history back many and gives us a factual identity.”

RCSI and ALMAC Discovery Partnership to Target the Root of Cancer: Cancer Stem Cells

A New Year…and a new challenge for MCT postdoctoral researcher Gillian Moore 

Between the post-Christmas blues, cold days and that painful wait for the next pay day, January can be a pretty long and gruelling month. This year, deviating from the norm, my January kicked off to a great start with my eagerly awaited move to RCSI. Before Christmas I was delighted to find out that I would be working alongside Prof. Tracy Robson in the Department of MCT and I’m really excited for 2017, and the new opportunities and challenges this postdoctoral research position has to offer.
An ongoing research collaboration between the Robson research group and leading oncology pharmaceutical company, ALMAC Discovery, resulted in the development of ALM201, an anti-cancer peptide-based drug currently in Phase I clinical trial for patients with solid tumours. ALM201 is structurally based on the naturally occurring protein, FKBPL. FKBPL and its peptide-derivative, ALM201, have demonstrated potent anti-angiogenic properties, and notably, a unique ability to target cancer stem cells. Targeting of cancer stem cells has arguably become the Holy Grail of cancer therapy in recent years. Within the mass of every tumour there is a subpopulation of cancer cells with the ability to self-regenerate. It is this cell population that are responsible for the initiation and propagation of a tumour, and recurrence of disease following resistance to chemo and/or radiotherapy. If we can robustly target the bulk of the tumour in addition to any residual cancer stem cells then we can potentially circumvent progression and indeed recurrence of disease.

Left to right: Dr Graham Cotton, Senior R&D Group Leader, Almac Discovery; Prof Tim Harrison, Vice President Discovery Chemistry, Almac Discovery; Prof Tracy Robson, Head of Molecular & Cellular Therapeutics, RCSI; Dr Gillian Moore, postdoctoral researcher (Robson Group); Seamus Browne, RCSI Head of Industry Partnerships; Dr Stephanie Annett, postdoctoral researcher (Robson Group).

Ovarian cancer is one of the top ten most common cancers in women and is associated with a poor prognosis, primarily due to the late presentation of disease. In the coming months, the next stage in the clinical trial of ALM201 will involve the treatment of a cohort of ovarian cancer patients. Recent, unpublished preclinical data in the Robson group has indicated promising anti-cancer stem cell efficacy of ALM201 in the ovarian cancer setting. I am interested in understanding the molecular mechanisms that underpin this observed anti-cancer stem cell activity of ALM201. A new phase of academic research funding from ALMAC Discovery will enable us to carry out this work. While the specific targeting of ovarian cancer stem cells is a relatively new research field, it has potential to provide much needed alternate treatment options for this aggressive tumour type and may have implications for other malignancies.

It’s great to be part of MCT at RCSI and I’m looking forward to sharing our research findings as the project develops.

A pharmacogenomic exploration of adverse drug reactions in epilepsy (PGXOME)

For most people with epilepsy, long term treatment with anti-epileptic drugs (AEDs) are necessary to prevent the seizure, and 40% do not respond to the first line of AED, leading to an often lifelong odyssey of trial and error towards effective treatment that is often not found. Epilepsy is primarily treated using AEDs, but these are associated with a considerable risk for adverse drug reactions (ADRs), some of which have been shown to have a genetic predisposition. For example, the genetic variant HLA-A*3101 is a common risk factor for rash and severe blistering skin reactions with the drug carbamazepine (Tegretol) in Europeans. However there are few other predictors of some more common ADRs.

Dr. Mark McCormack

The EpiPGX Consortium was established to identify genetic biomarkers of epilepsy treatment response from patient centres across Europe. The EpiPGX Consortium has generated genetic profiles on over 8000 patients with matching detailed drug response and medical histories. In order to investigate the links between genetic profiles and ADRs in epilepsy, Dr. Mark McCormack will travel to UMC Utrecht, the Netherlands for one year on a  Marie-Skłodowska-Curie Fellowship from the European Commission.

The aim of this fellowship is to identify clinically useful genetic variants to predict adverse reactions to AEDs. This will help optimize personalized treatment, limit the trial and error approach of AED choice, and thus improve medication safety and quality of life in epilepsy.