Introducing Ingmar Schoen

Hi everyone in MCT! Thanks for the warm welcome!
 As some of you know, I have joined RCSI as a StAR research lecturer in June. My plan is to establish a lab on ‘MechanoVascular Biology and Microscopy’. What do I mean by this?
 The first part ‘MechanoVascular Biology’ sets the scope. I am interested in how cells in the cardiovascular system use mechanical forces to achieve their tasks. As mechanical and chemical cell functions are tightly related, both play important roles in health and disease. Most research has focused on one or the other aspect, but not both. The novel research field of ‘mechanobiology’ takes an integrative approach to better understand how physical forces co-regulate chemical processes on the molecular level. In my previous work at ETH Zurich, I have studied how fibroblasts sense matrix stiffness and respond to it. Here at RCSI, I want to study platelets in the context of thrombosis and, over the years, investigate their interplay with endothelial cells.
The second part ‘Microscopy’ highlights one of the major working horses in my lab. Following the credo ‘seeing is believing’, watching cells can tell you a lot about how they do things. I use microscopy to test hypothesis but also to discover unexpected behaviour. Over the years, I have developed several new microscopy techniques to look at sub-second dynamic processes, directly measure cellular tractions, or determine the nanoscale architecture of multi-protein structures. These are great tools to better understand how the processes starting from platelet activation and ending with the consolidation of the thrombus are regulated in space and time. For this we will use in vitro models, but I am keen to move in the future towards in vivo imaging.
By now, you may have noticed from my scientific viewpoint and my enthusiasm for technology that my background is in physics. I studied physics with a specialization on biophysics at the Technical University Munich. My PhD work at the Max Planck Institute of Biochemistry focused on electrical stimulation of neurons with extracellular electrodes. After a short postdoc at the Ludwig Maximilians University Munich where I studied bi-molecular binding kinetics in living cells, I moved to ETH Zurich in Switzerland. That’s where I have started with mechanobiology and super-resolution fluorescence microscopy, which I know bring over to RCSI.
 A long way is lying ahead of me to cross the bridge towards clinical research. I look forward to having many inspiring discussions with you, already thank you for the ones we had so far, and hope that I can make a valuable contribution to the research here at RCSI!
Looking forward to seeing you at MCT Research Talks on 16th October 2017 at 12.00 TR4!
Kind wishes,

Timely Announcement for Nobel Prize


Last Monday while in Amsterdam with my Mam and two sisters, a friend of mine sent a text to let me know that the 2017 Nobel Laureates in Physiology and Medicine were Hall, Rosbash and Young.  They were awarded the Nobel for their work in identifying the key genes that create circadian or body clock rhythms in the fruit fly. My feet literally were stuck to the ground, it was thrilling to know that these gentlemen would get the recognition that they so deserve, but also what this will mean for the field of science that I am so passionate about. The body clock is the molecular timekeeping system that exists in practically every organism on the earth and in every cell in our body. Simply put, it allows the cell to tell what time of day it is. Why is that important? We live on a spinning planet and because of the earth’s rotation to the sun, all life on earth has been subjected to daily periods of light and heat, dark and cold. The body clock allows us to anticipate and respond to these 24-hour predictable environmental changes and synchronises our physiology to it. For example, the body clock increases cortisol levels in the body ahead of awakening, this helps us to become active once we wake. The body clock also increases expression of digestive enzymes in the intestinal tract during daylight hours (this is why curry chips at 3am is never a great idea!).

Back in the 80’s Hall, Rosbash and Young independently isolated a gene called Period, they showed how the gene encodes a protein PER that builds up in cells at night and degrades during the day. This daily rise and fall of PER essentially allow the cell to track time of day. How thrilling it must have been for them to observe this daily change in the mRNA levels of Period gene (Figure 1- black line), all that is changing along the x-axis is the time of day.

So what does this mean three decades later? We have made great strides in understanding how the molecular clock works. We now know that the clock keeps time by a series of transcriptional-translational feedback loops. We also know that the clock controls 40% of all coding genes within the body. The body clock controls all aspects of our physiology from metabolism to immunity.

Many diseases, such as osteoarthritis and cardiovascular disease, are highly time of day dependent. Moreover, it appears that disruption of our body clocks, caused by our non-stop 24/7 lifestyle and exposure to artificial light at all times of day, is partly responsible for the increase in chronic inflammatory diseases. Unfortunately, most cell culture systems are not synchronized with the time of day, and this, in my opinion, is one of the main reasons that many researchers unknowingly neglect this field. Finally, we are making great strides in attempting to time specific treatments to the right time of day, an area called chronotherapy. Therefore, it is my hope that this increased awareness of the body clock will bring more researchers into this fascinating field. If we don’t fully understand how our body clock controls physiology and disease we will certainly be left in the dark.

Annie Curtis is a Research Lecturer and runs the Immune Clock laboratory at MCT and is fascinated by all things body clock related.


Introducing Jennifer Dowling

I have recently arrived as a Postdoctoral Researcher in Dr Claire McCoys Lab in the Molecular and Cellular Therapeutics Department (MCT) at RSCI. I specialise in immune signalling pathways and inflammatory complexes underlying infectious and inflammatory diseases, including multiple sclerosis (MS), sepsis and highly virulent strains of influenza. 

After obtaining my BSc in Biotechnology in 2005 from Dublin City University I was awarded a postgraduate scholarship from the Irish Research Council and went on to complete my PhD in Immunology in 2009 (DCU). I conducted my postdoctoral training in innate immune signalling with Prof Luke O’Neill in Trinity College Dublin with a strong focus on understanding the mechanisms regulating a key inflammatory complex in immune cells known as the inflammasome.

I was subsequently recruited to the Centre for Innate Immunity and Infectious Diseases at the Hudson Institute of Medical Research, Melbourne, Australia under the supervision of Prof Ashley Mansell and continued my work in this field. Here I secured funding from the Angior Family Foundation to support my research on blocking the detrimental inflammation that occurs during sepsis.

I am excited to be joining MCT and the McCoy Lab. Like Claire, I have a passionate interest in medical research and chose to work in inflammation because it has a central role in the progression of a broad range of diseases. I am also passionate about community engagement, science communication and educating the next generation about the importance of medical research and the role of inflammation in disease.

Jennifer Dowling

A possible therapeutic avenue in Cystic Fibrosis

Cystic fibrosis (CF) is an inherited chronic disease that primarily affects the lungs and digestive system. CF is caused by mutations in the Cystic Fibrosis Transmembrane Regulator (CFTR) gene, a chloride channel responsible for helping conduct chloride and other ions across epithelial membranes. The loss of a functional CFTR channel disrupts ionic homeostasis resulting in mucus production that clogs the lungs and pancreas and results in a vicious cycle of chronic infection and inflammation as the disease progresses.

There are almost 2,000 different variants in the CFTR gene and 70 % of CF patients contain a mutation at position 508, which results in the loss of Phe508 and disruption of the folding pathway of CFTR. ΔF508 CFTR is a trafficking mutant that is retained in the endoplasmic reticulum (ER) and unable to reach the plasma membrane. Efforts to enhance exit of ΔF508 CFTR from the ER and improve its trafficking are of utmost importance for the development of treatment strategies. Clinically, progress has been made in recent years identifying therapeutics that target CFTR dysfunction in patients with specific mutations. However, small molecules that directly target the most common misfolded CFTR mutant, ΔF508, and improve its intracellular trafficking in vitro, have shown modest effects We performed a study aimed to identify new therapeutic targets that will help address the unmet clinical need for CF patients homozygous for  the ΔF508 mutation.We aimed to understand the protein interactions regulating CFTR transport using mass spectrometry-based proteomics. Using mass spectrometry based protein interaction profiling and global bioinformatics analysis we revealed mammalian target of rapamycin (mTOR) signalling components to be associated with ∆F508 CFTR.  Our results showed upregulated mTOR activity in ΔF508 CF bronchial epithelial cells. In addition to a well described role in several cancer subtypes, excessive activation of the mTOR pathway has been reported to be involved in age-related misfolding diseases. There are a range of inhibitors that target the PI3K/Akt/mTOR pathway and after screening a selection of inhibitors, we identified 6 different inhibitors that demonstrated an increase in CFTR stability and expression. Mechanistically, we discovered the most effective inhibitor, MK-2206 exerted a rescue effect by restoring autophagy in ΔF508 CF cells. These findings highlight this pathway as a possible therapeutic avenue worth further exploration in Cystic Fibrosis.

Judith Coppinger and her team: Mark Ward and Zivile Useckaite

We aimed to understand the protein interactions regulating CFTR transport using mass spectrometry-based proteomics. Using mass spectrometry based protein interaction profiling and global bioinformatics analysis we revealed mammalian target of rapamycin (mTOR) signalling components to be associated with ∆F508 CFTR.  Our results showed upregulated mTOR activity in ΔF508 CF bronchial epithelial cells. In addition to a well-described role in several cancer subtypes, excessive activation of the mTOR pathway has been reported to be involved in age-related misfolding diseases. There are a range of inhibitors that target the PI3K/Akt/mTOR pathway and after screening a selection of inhibitors, we identified 6 different inhibitors that demonstrated an increase in CFTR stability and expression. Mechanistically, we discovered the most effective inhibitor, MK-2206 exerted a rescue effect by restoring autophagy in ΔF508 CF cells. These findings highlight this pathway as a possible therapeutic avenue worth further exploration in Cystic Fibrosis.

This study was a collaboration between several groups at University College Dublin, Cystic Fibrosis Unit, St Vincent’s Hospital, Royal College of Surgeons in Ireland, Beaumont Hospital and the University of Mainz, Germany. Ongoing work in this area is taking place at the National Children’s Research Centre. Further details can be found here in a recent publication on this work.

The 13th World Congress of Biological Psychiatry

In keeping with the strategic objective of further increasing our international profile in the research domain, Professor John Waddington (Emeritus, MCT) has recently returned from the World Congress of Biological Psychiatry, Copenhagen, where he was invited to organise, Chair and speak in a symposium on ‘Psychosis is disrespectful to diagnostic boundaries: Nosological and pathobiological implications of psychoses beyond the schizophrenia spectrum’. He was also invited to Co-Chair and speak in a second symposium on ‘Beyond unitary models of psychosis: Confronting complex aetiology and dimensionality’. This reinforces the high standing in which our investigators are held in the international scientific community. 

Irish Centre for Vascular Biology Achievements

Bayer announced awards of $2 Million in Hemophilia Research and Patient-care Grants to 16 People at The International Society on Thrombosis and Haemostasis 2017, held in Berlin in July.

Congratulations to Dr. Roger Preston, Irish Centre for Vascular Biology[ICVB], (MCT) who was awarded a prestigious Special Project Award (€200,000) from the Bayer Haemophilia Award Programme to develop novel pro-hemostatic agents for the enhanced treatment of patients with haemophilia.

There was a strong representation from MCT at the ISTH Congress including Professor Dermot Kenny, Professor James O’Donnell, Dr. Roger Preston and their respective teams, and Dr. Dermot Cox, President, SSC* 2018. [*SSC:The Scientific and Standardization Committee].

Orla Willis Fox, Phd student with Dr. Roger Preston (ICVB/MCT), was awarded an ISTH Young Investigator Award for submitting one of the highest ranked abstracts. Her abstract title was ‘Inhibition of Activated Protein C Aspartyl Beta-hydroxylation Restricts Anticoagulant Function but Enhances Cytoprotective Signaling Activity’.

Professor James O’Donnell, ICVB/MCT presented an invited state-of-the-art lecture on his landmark studies on VWF and Cerebral Malaria,Dr. Michelle Lavin, ICVB/MCT on LOVIC [The Low Von Willebrand factor Ireland Cohort (LoVIC)] study, Dr. Sonia Agulia, ICVB/MCT on The Role of Sialylation in low VWF levels andSoracha Ward, ICVB/MCT gave a presentation on VWF Clearance.

Professor James O’Donnell at the International Society on Thrombosis and Haemostasis Congress, Berlin

Additionally, there was significant interest among the attendees in the ISTH SSC 2018 Annual Meeting which will be held in Dublin 2018;  Dr. Dermot Cox, President, SSC 2018 anticipates a record attendance of 3,000 delegates for the Dublin meeting. Olwen Foley , (MCT) managed the Irish stand.


Orphan Drug Status for ALM201 for Ovarian Cancer

Over the last 10 years, Prof Tracy Robson has collaborated closely with Almac Discovery on the development of the therapeutic peptide, ALM201, based on her initial research into the anti-angiogenic properties of FKBPL.  ALM201 is part of the active anti-angiogenic domain of FKBPL and is a potent inhibitor of angiogenesis both in vitro and in vivo.  The technology was patented by Professor Robson and licensed to Almac Discovery.  Following collaborative pre-clinical work showing robust efficacy, this ‘first-in-class’ FKBPL-based antiangiogenic peptide has entered phase I/II clinical trials in the ovarian setting (EudraCT No: 2014-001175-31). Whilst the trial is ongoing, we have received exciting news that the U.S. Food and Drug Administration (FDA) has granted Orphan Drug Designation to the drug candidate ALM201 in the treatment of ovarian cancer. The FDA Office grants orphan drug designation to encourage the development of drugs for the prevention, or treatment of a medical condition affecting fewer than 200,000 people in the US and grants market exclusivity for a seven-year period if the sponsor complies with certain FDA specifications. Receiving Orphan Drug Designation for ovarian cancer underlines the fact that ALM201 may address a significant unmet medical need for this important disease.

Tracy Robson

Extending international collaboration: ‘the future is East’


While RCSI is an institution with a long-standing international perspective on education in the health sciences, it has as a strategic goal the further extension of its international activities, particularly in relation to research collaborations. RCSI is doing so through several mechanisms, which include Science Foundation Ireland International Strategic Collaboration Awards (ISCAs), namely ISCA-Brazil, ISCA-China and ISCA-Japan, awards from the Japan Society for the Promotion of Science (JSPS), the EU Erasmus+ programme, and via joint programmes with individual institutions. Over the past several years, I’ve been pleased to contribute to these developments and continue to do so in my new role as Professor Emeritus.

In October-November 2016, I spent three weeks in Japan under a JSPS Invitation Fellowship. From a base at Hoshi Pharmaceutical University, Tokyo, I also visited and gave seminars at Nihon University at its Tokyo and Matsudo campuses, Nagoya University, and Takeda Pharmaceutical Company, Fujisawa. Even after many previous visits to Japan, it’s difficult to describe the enduring professional and personal pleasures of interacting and fostering collaborations with Japanese academics/scientists and enjoying their beautiful country and so hospitable a culture and society. In addition to ongoing research collaborations with Prof. Hiroko Ikeda and her colleagues, this summer will see the second exchange of RCSI and Hoshi University students to participate in the International Research Summer School, directed in RCSI by Dr. Sarah O’Neill (MCT), whereby up to four students from each Institution travel to the other to undertake a 2-month research project. Additionally, later this year Dr. Sudipto Das (MCT) will travel to Hoshi University under a JSPS Postdoctoral Fellowship to further extend collaborative research studies. We hope that such interactions will grow over the years to come.

In February-March 2017, I spent three weeks in China under a joint appointment as a Professor of Pharmacology in the College of Pharmaceutical Sciences at Soochow University, approximately 100 km west of Shanghai. China is a country that is now pursuing a ‘twin-track’ approach of “… internal restructuring of its economy combined with exposure to global trade winds and investment”. While this presents some similarities but many fascinating contrasts with academe in both Japan and Ireland, interacting and fostering collaborations with Chinese academics/scientists also brings many professional and personal pleasures. While there, I gave three undergraduate lectures on mental health, met with postgraduate students and postdoctoral researchers, and facilitated the visits of Prof. Tracy Robson & Dr. Darran O’Connor (MCT), Prof. Jochen Prehn (Physiology & Medical Physics) and Prof. Brian Kirby (School of Pharmacy) to Soochow University and the subsequent reciprocal visits of Profs. Xinliang Mao and Xinchen Teng to RCSI. In addition to ongoing research collaborations with Prof. Xuechu Zhen, this summer will see the third exchange of RCSI and Soochow University students to participate in the International Research Summer School, whereby, as with Hoshi University, up to four students from each Institution travel to the other to undertake a 2-month research project. Dr. Darren Griffith (Pharmaceutical & Medicinal Chemistry) will be the next RCSI colleague to visit Soochow University and we hope that such interactions, like those with Hoshi University, will grow over the years to come.

At the Monument to the laboratory mouse, a sculpture in front of the Institute of Cytology and Genetics of the Russian Academy of Sciences, to commemorate the use of mice in genetic research to understand mechanisms of disease and develop new drugs

It is difficult to think of a greater contrast than my recent visit, April 2017 under Erasmus+ funding, to Novosibirsk State University and the Institute of Physiology and Fundamental Medicine. Novosibirsk is Russia’s third-largest city and is located in Siberia, approximately 2,800 km east of Moscow. The University and Research Institutes are located in Akademgorodok [Akadem = academic, gorod = town, ok = small, hence Akademgorodok = small academic town], the purpose-built educational and scientific centre of Siberia constructed in the late 1950s approximately 30 km south of the city of Novosibirsk. In April, there was still some snow on the ground and the nearby Ob river was still frozen and will remain so until the end of May. During my stay there, the weather ranged from one blizzard and one (in their terms) ‘regular’ fall of snow through to warm, sunny periods with a temperature of 20C; Prof. Marc Devocelle (Pharmaceutical & Medicinal Chemistry) and I were reluctant to travel to Novosibirsk until April, to avoid the harsh Siberian winter, a meteorological objective that was only partially successful. This academic centre has both original and new buildings, with good teaching and research facilities. Under the kind offices of Profs. Vladimir Pustylnyaki and Michele Debrenne, Novosibirsk State University, I gave three undergraduate lectures on the neuroscience of mental health, and under the auspices of Dr. Tatiana Lipina, Institute of Physiology and Fundamental Medicine gave a postgraduate seminar.

During a research seminar at the Institute of Physiology and Fundamental Medicine

Meetings with them and several other colleagues explored the potential for future research collaborations. After what we regarded as a good meeting, one colleague reached into a cupboard for a bottle of vodka and poured us each a generous measure; he hoped this would induce ’emotional warmth’ commensurate with what he regarded as the positivity of the meeting. After this had been imbibed, he then poured a second generous measure of vodka, to reinforce these positive sentiments. Clearly, RCSI needs to reconsider its policies in this regard with a view to appropriately realigning its practices to these new international standards. As I write this in the second week of May, Prof. Konstantin Volcho, Dr. Ekaterina Semenova and Dr. Artyom Rogachev are currently making reciprocal visits to RCSI under Erasmus+ funding and we hope that such interactions, like those with Hoshi and Soochow Universities, will grow over the years to come.

To paraphrase: ‘The future is bright, the future is East’.

John Waddington   

Dr Annie Curtis wins L’Oréal-UNESCO Fellowship For Women in Science

Our congratulations to Dr Annie Curtis with L’Oréal-UNESCO Fellowship For Women in Science Award! Well done!

She was awarded a prestigious L’Oréal-UNESCO For Women in Science 2017 Fellowship at a ceremony held at the Royal Society in London on May 5th.

She was one of five winners of these fellowships and the only Irish winner this year. The fellowship will support her research into understanding the precise mechanisms by which the body clock restrains inflammation from a key immune cell called the macrophage.

Professor Tracy Robson said: “This is a fantastic achievement and I am proud to congratulate Dr Annie Curtis on this highly competitive award for which there were nearly 300 applicants. It is a great testament to her research within the recently established Immuno-Clock Lab. Annie will be an excellent ambassador for Women in Science and this award reflects the world-class research ongoing at RCSI. Indeed the only Irish winners of these For Women in Science fellowships now reside within this institution.”

Recipients of L’Oréal-UNESCO For Women in Science 2017 Fellowship. Courtesy of RCSI Communications Department

The recipients of L’Oréal-UNESCO For Women in Science 2017 Fellowship:

  • Dr Annie Curtis, Royal College of Surgeons in Ireland, the human body clock and inflammation
  • Dr Radha Boya, University of Manchester, Nanoscience
  • Dr Manju Kurian, UCL Great Ormond Street, Neurology
  • Dr Bethan Psaila, University of Oxford, Haematology
  • Dr Priya Subramanian, University of Leeds, Mathematics

RCSI Communications Department


Decoding neuroblastoma microenvironment

MCT Research Talks – 24th April 2017

The main challenge in treating high-risk neuroblastoma is to combat tumour metastasis and development of resistance to multiple chemotherapeutic drugs. In the native tissue, cancer cells are surrounded by a three-dimensional (3D) microenvironment which provides biological and physical support and determines disease initiation, progression, patient prognosis and response to treatment. The conventional two-dimensional (2D) cell culture lacks this feature resulting in discrepancies between in vitro and in vivo results. Current neuroblastoma studies employ either 2D cell culture systems or murine models or alternatively a mix of both.

In collaboration with Dr Caroline Curtin and Prof Fergal O’Biren (TERG), we decided to bridge the gap between 2D culture and in vivo tumours in neuroblastoma research by developing a tissue-engineered cell culture model of neuroblastoma. This project is supported by a pilot grant from Neuroblastoma UK.

To understand what signalling pathways are activated in 2D, 3D and in vivo neuroblastoma models, we decided to look closer at the differences between conventional 2D neuroblastoma cells and their xenografts. This way we hope to find those targets that are activated in both tumour microenvironment and the 3D tissue engineered models. Ciara and Larissa have begun this search by profiling xenograft samples with a panel of antibodies. Ciara became particularly fascinated by the elevated levels of c-jun, TCF1 and LEF1 in cisplatin-resistant neuroblastoma xenografts suggesting that the development of cisplatin resistance in neuroblastoma may be accompanied by activation of the wnt/b-catenin pathway in vivo. Larissa identified that cisplatin-resistant neuroblastoma cells secrete chromogranin A (CgA) at levels higher that cisplatin-sensitive cells. CgA levels also correlated with increased vascularisation and volume of murine orthotopic neuroblastoma xenografts. Altogether it suggests that CgA can be used as a marker of neuroblastoma cell growth both in vitro and in vivo.

Olga Piskareva