Irish Association For Cancer Research Meeting 2017

Irish Association for Cancer Research – Annual Meeting takes place at Newpark Hotel, Kilkenny on Thursday 23 and Friday 24 February 2017.

MCT cancer researchers secured oral presentations at different sessions. Prof Ray Stallings is a guest speaker at the Plenary Session focused on challenges in childhood cancers. He will be discussing ‘Modulation of neuroblastoma phenotype with epigenetically regulated miRNAs’.

Stephanie Annett will be giving a talk ‘FKBPL as a novel prognostic biomarker and therapeutic agent in high-grade serous ovarian cancer’ at Proffered Paper Session on Thursday morning. Two Irish Cancer Society funded PhD students will be discussing their findings at the Irish Cancer Society Scholar and Fellow Presentation session. Louise Walsh – ‘RNA sequencing identifies bromodomain proteins as a therapeutic strategy for invasive lobular carcinoma’ and Brian Mooney – ‘Expression of the cocaine- and amphetamine-regulated transcript recruits BAF chromatin remodelling complexes to the estrogen receptor’.

Good luck to our presenters!

Olga Piskareva



Microcalcifications in breast cancer: Exploring their molecular formation and biological significance

MCT Research Talks – 23th January 2017

Survival rates for breast cancer have risen significantly over the past few decades, in large part due to a considerable increase in the number of tumours detected via mammography at an early, more easily-treated stage. The presence of microcalcifications on a mammogram constitutes an important diagnostic clue to radiographers, with approximately 30% of invasive breast tumours and up to 90% of cases of ductal carcinoma in situ (DCIS) being detected by the presence of calcifications. Some studies have also suggested that the presence of calcifications may act as a prognostic factor, as patients presenting with breast tumours with associated calcifications have a worse prognosis than those without.
Despite their importance in breast cancer diagnosis, the exact mechanism by which microcalcifications are formed remains largely unexplored. Our group previously established the first in vitro model of mammary cell microcalcification (1) which we have recently extended to the human the breast cancer cell line MDA-MB-231. When cultured with a cocktail of osteogenic-reagents for a prolonged period, these cells produce deposits of calcium phosphate.

Figure 1. Alizarin Red S stained MDA-MB-231 cell monolayer, grown in DMEM (Control) or DMEM supplemented with osteogenic cocktail and dexamethasone (OC+Dex). Red staining indicates presence of calcified deposits.

Using a combination of histological staining, quantitative measurement of calcium content, alkaline phosphatase activity and analysis of gene expression, we can monitor the changes in cell phenotype leading to onset of mineralisation. The nature of our model allows for easy manipulation of cell culturing conditions and by adding various inhibitory compounds or cytokines to our culture media, we can identify the key pathways and targets necessary for calcification production. In doing so, we hope to build up a comprehensive understanding of the cellular and molecular basis underlying the formation of these important diagnostic clues.

Recommended reading:

Cox RF, Hernandez-Santana A, Ramdass S, McMahon G, Harmey JH, Morgan MP.  Microcalcifications in breast cancer: novel insights into the molecular mechanism and functional consequence of mammary mineralisation. Br J Cancer. 106(3):525-37 PMID: 22233923 (Jan 2012)

Shane O’Grady, Maria Morgan

The role of the anorectic neuropeptide CART in breast cancer

MCT Research Talks – 16th January 2017

Breast cancer currently affects 1 in 8 women in Ireland, with over 3000 reported cases each year. The most common subtype of breast cancer, known as Estrogen Receptor positive (ER+) breast cancer, accounts for roughly 70% of all breast cancers diagnosed. The most common drug used to treat this disease (Tamoxifen) works by preventing estrogen from driving the growth of the cancer cells, however, roughly 1 in 3 women will be resistant to tamoxifen treatment, highlighting the need for further research into this field. A number of years ago, though mining of publically available datasets, we identified a gene known as CART to be a marker of poor prognosis in ER+ breast cancer. CART (The Cocaine- and Amphetamine-Regulated Transcript) is a neuropeptide involved in processes such as feeding and drug reward. We have identified that high expression of CART in breast cancer patients correlates with poor overall survival, and also a poor response to tamoxifen. We also demonstrated that CART could influence the activity of ERα in a ligand-independent manner [1]. Our current research focuses on combining proteomic (mass-spectrometry) and transcriptomic (RNA-seq) approaches in order to fully understand the role CART plays in ER+ breast cancer. We aim to modulate the expression of these identified targets in order to investigate whether any of these targets could slow the growth of breast cancer cells in vitro. Combining these approaches, we hope to identify novel therapeutic opportunities for patients with ER+ breast cancer.

Recommended reading:

[1] DJ Brennan, DP O’Connor et al., The Cocaine- and Amphetamine-Regulated Transcript mediates ligand-independent activation of ERα, and is an independent prognostic factor in node-negative breast cancer. Oncogene 2012, 31, 3483–3494; doi:10.1038/onc.2011.519

Brian Mooney, Darran O’Connor

MCT student, Lisa Dwane, talks about her research and recent achievements

cropped-RCSI-logo-1.jpgFollowing completion of my Pharmacology degree in UCD, I began a PhD in breast cancer research under the supervision of Dr. Darran O’Connor, a career I have always been very determined to follow. My research is focused on endocrine-driven breast cancer and understanding the molecular mechanisms that drive this subtype of cancer. Currently, half of breast cancer patients that receive anti-endocrine therapies will relapse, so there is an urgent need for the identification of novel therapeutic targets. Our research is focused on the deubiquitinating enzyme USP11, which we believe plays a key role in driving endocrine-driven breast cancer. When we silence USP11 in vitro, we see a reduction in estrogen receptor activity and cell viability. During the final year of my PhD, I hope to elucidate the mechanism by which USP11 plays this role, and determine the prognostic relevance of USP11 in breast cancer. This could potentially lead to a better understanding of endocrine-driven breast cancer and with further validation, USP11 may represent a novel therapeutic target.

Lisa Dwane presents her research at the Irish Cancer Society’s Researcher of the Year Award. december, 1st, 2016. TCD
Lisa Dwane presents her research at the Irish Cancer Society’s Researcher of the Year Award. December, 1st, 2016. TCD

As a pharmacologist, I was thrilled to win best oral presentation at the Irish Association of Pharmacologists Annual Meeting! The standard of talks throughout the day were excellent, with a wide range of topics explored. I was also a finalist for the Irish Cancer Society’s Researcher of the Year Award, which took place 1st December at Trinity College Dublin. The purpose of the evening was to communicate our research to a lay audience, which proved more difficult than expected! Although I didn’t take home the award it was a very enjoyable evening, and the experience was invaluable. As scientists it is important for us to share and communicate our research with the general public and this was a skill I gained from the night!

Winners and finalists for the Irish Cancer Society’s Researcher of the Year Award
Winners and finalists for the Irish Cancer Society’s Researcher of the Year Award