Harnessing FKBPL to target cancer and vascular disease

Pathological blood vessel formation (angiogenesis), or the inability of endothelial cells to perform their physiological function (endothelial dysfunction), are defining features of disease. The endothelium actively controls vessel integrity, vascular growth and remodelling, tissue growth and metabolism, immune responses, cell adhesion, angiogenesis, haemostasis and vascular permeability.  It is, therefore, a vital and largely unexploited target for novel therapies.

Prof Tracy Robson’s team have identified and characterised a novel anti-angiogenic protein, FK506 binding protein like – FKBPL, significantly advancing our understanding of the anti-angiogenic process, in particular, how tumours recruit blood vessels to support their growth. This led to a collaborative study with Almac Discovery to develop therapeutic peptides based on FKBPL’s active domain to explore their potential in cancer by targeting the ability of tumours to recruit blood vessels to grow, invade and metastasise beyond the site of the primary tumour.  The team are also testing the ability of these peptides to sensitise tumours to current therapies and to target cancer stem cells that lead to the onset of resistance and/or recurrent disease.   Importantly, these studies led to a ‘first in man’ phase I clinical in cancer patients where the clinical candidate drug, ALM201, was very well tolerated over a wide range of doses.  Prof Robson’s team (Dr Stephanie Annett and Dr Gillian Moore) will discuss this data together with new data suggesting a strong role for FKBPL in vascular endothelial dysfunction and possible implications therefore in other diseases associated with vascular disease.

Graham Cotton, Tim Harrison, Tracy Robson, Gillian Moore, Seamus Browne and Stephanie Annett (left to right)

Daffodil Day Spinathon

On Friday, March 23rd, MCT and the Department of Physiology hosted a Spinathon for Daffodil Day, the Irish Cancer Society’s biggest fundraising day of the year. The aim of the Spinathon was to cycle the same distance as the Ring of Kerry, a total of 170 km on each bike. A number of willing participants took part on the day, including Sudipto, Lisa, George and Tony from MCT. A total of €1966 between the JustGiving.ie fundraising page and bucket collections on the day.

Final Year Royal College of Surgeons PhD Student Lisa Dwane from Clondalkin who is conducting research into hormone driven breast cancer with some daffodils for Daffodil Day and her colleagues (from left) Post Doctoral Researchers Dr Gillian Moore from Baldoyle and Dr. Brian Mooney from Bray Co. Wicklow and Dr. Stephanie Annett from Lisburn Co Antrim.
Pic Steve Humphreys
22nd March 2018

Well done to everyone involved!

A new strategy to study neuroblastoma

MCT Research Talks

Neuroblastoma is a cancer of the nervous system that primarily affects children aged 5 and younger. Although neuroblastoma accounts for only 5% of childhood cancers, it is responsible for approximately 15% of childhood cancer deaths. For children with high-risk neuroblastoma – children in which cancer has spread significantly – the outlook is extremely poor. Approximately 1 in 5 of these children will not respond to treatment, and of those that do, 50% will develop drug resistance leading, in many cases, to death.

Dr Olga Piskareva, an NCRC supported scientist and Honorary Lecturer at RCSI, has recently published a study describing a new way to grow cancer cells in the lab. Traditionally, researchers grow cancer cells in the flasks on the flat surface. This is not the way cells grow in the human body. Dr Piskareva in collaboration with Dr Curtin and Prof O’Brien has designed a new way to grow cancer cells that recreate their growth in 3 dimensions as in the human or mice body. They used special cotton wool like sponges as a new home for cancer cells and populated them with cancer cells. At the next step, they gave cells the drug at the different amount and checked what happened. In this system, cells responded only to the drug at doses used in the clinic or mice models.

This new strategy to grow cells on sponges should help to understand cancer cell behaviour better and accelerate the discovery and development of new effective drugs for neuroblastoma and other cancers. This, in turn, will make the outlook for little patients better and improve their quality of life.

Dr Olga Piskareva and her research group

More details about our research can be found in Dr Piskareva’s blog!

Reported by Olga Piskareva

FcgRIIa –an attractive target to control immune response

MCT Research Talks

Our group is a drug discovery lab currently working on the development of a novel Fc gamma receptor IIa inhibitors. FcgRIIa is a low affinity receptor for Fc portion of immunoglobulin G (IgG) and is implicated in a variety of conditions that are still mainly untreatable, such as rheumatoid arthritis, lupus, immune thrombocytopenia, sepsis. FcgRIIa is widely expressed by human innate immune cells, and is the only Fc gamma receptor found on human platelets.

Mainly over-stimulation of the FcgRIIa receptor in these conditions that leads to the progression of the disease. For example, in sepsis the platelets get activated via FcgRIIa in response to bacteria present in the blood, which results in thrombocytopenia and disseminated immune coagulopathy. This causes, not only internal haemorrhage but also formation of blood clots that block peripheral blood vessels leading to sepsis-associated limb loss, heart attacks and/or strokes. Using a targeted approach, such as pharmacophore modelling, our group has developed a small molecule compound that effectively blocks FcgRIIa-mediated platelet aggregation in vitro. In agreement with the chosen targeted approach, this compound was shown to bind to the FcgRIIa directly and possesses specificity for the FcgRII subgroup of the Fcg receptors.

Ultimately, this compound has a great potential to be used for treatment of other FcgRIIa-mediated auto-immune conditions, such as rheumatoid arthritis, lupus and an array of immune thrombocytopenia conditions.

Prof Dermot Cox, Dr Tatiana Devine and Padraig Norton

Congratulations to ‘Drs’ Shane O’Grady and Brian Mooney

Dear all,

Please join me in offering congratulations to ‘DrsShane O’Grady and Brian Mooney who successfully defended their PhD thesis yesterday:

Shane’s: Investigation of the functional roles of calcium channels, inflammatory cytokines and tumour micro-environmental factors in a human in vitro model of breast cancer calcification
Supervisor: Maria Morgan
Brian’s: The role of the anorectic neuropeptide CART in breast cancer. Supervisor: Darran O’Connor

 

 

Well done to all.

Tracy

Tracy Robson

MCT Success at RCSI Research Day 2018

Dear All,
I wanted to congratulate everyone for their significant contributions to recent RCSI Research Day.  MCT’s presence was strong on the day with a number of keys oral and poster presentations from across the four MCT research pillars. 
In particular, a huge congratulations to:
 Dr Joan Ni Gabhann for the Most Highly Cited RCSI Senior Authored Paper with Industry Collaboration 2012-2016 for her paper ‘Btk regulates macrophage polarization in response to lipopolysaccharide’.
 Rebecca Watkin (PI Prof Steven Kerrigan) and Edmund Gilbert (PI Prof Gianpiero Cavalleri)  who jointly won the best postgraduate oral presentation, sponsored by Bio-Sciences Limited, for their presentations on ‘S.aureus induced miR330-3p expression triggers abnormal permeability in an ex-vivo 2D model of sepsis’ and ‘The Irish DNA Atlas: Revealing Fine-Scale Population Structure and History within Ireland’, respectively.
 Prof James O’Donnell (ICVB) who won the Clinician CEO Innovation Award.
 Dr Ingmar Schoen for his novel Invention Disclosure.
 Camille Hurley (PI Dr Darran O’Connor) Edmund Gilbert (PI Prof Gianpiero Cavalleri)  and Conor Duffy (PI Claire McCoy) for winning inaugural RCSI International Secondment Awards.
 Finally, well done to Dr Claire McCoy for giving an inspiring and heartfelt presentation about her SFI President of Ireland Future Research Leader Award.
 Well done all. A fantastic achievement for MCT.
 Best wishes,
Tracy

MCT Research at the 54th Irish Association for Cancer Research Meeting 2018

Many MCTers presented their research at the 54th Irish Association for Cancer Research Meeting on February 22-23, 2018. The annual IACR meetings bring together the Irish cancer research community and distinguished international speakers. 260 attendees registered for the meeting with 150 abstracts accepted for oral and poster presentations. Notably, the IACR meeting committee creatively shapes the way this conference run. This year, the most dynamic session – Oral Poster Presentations (Prof. John Fitzpatrick Medal, 5 min talk+1 min Q&A) was set for the lay audience with the judging panel consisting of patients, patient advocates and researchers. Very interesting experience, have to say. Two MCT research studies were selected for this session: Olga Piskareva presented the collaborative project between her team and Prof Fergal O’Brien (TERG) “3D Tissue-Engineered Cell Model Of Neuroblastoma For Evaluating Cytotoxic and miRNA-Targeted Therapeutics” and O’Connor’s collaborative project on “RNA Sequencing Identifies BRD3 As A Novel Therapeutic Target In Invasive Lobular Carcinoma Breast Cancer” was presented by Kathryn Haley. Darran O’Connor himself was an invited plenary speaker. He talked about “The Power Of 1: What Can We Learn From Molecular Case Studies?” at the plenary session Emerging Techniques In Biomarker Discovery, Drug Development And Patient Stratification. MCT had a spot at the Proffered Paper Session with John Nolan presented the first data of the NCRC funded project “Modulation of Drug Resistance in High-Risk Neuroblastoma Through Exosomal miRNA”. Many other MCTers had Posters. For Shane O’Grady and Lisa Dwane, it was the last conference in the PhD status and for Olga Piskareva – in her role of Honorary Treasurer f0r the IACR!

Well done to all!

The 55th Irish Association for Cancer Research Meeting will be taking place in Belfast.

Reported by Olga Piskareva

MCT Research Talks November 27th 2017

Dr Justyna Surowka, Medical University of Lublin, Lublin, Poland
(Current Erasmus Post-doc with the O’Connor group) presented “Assessment of chosen immune cell populations in patients with ovarian cancer”
Despite the decades of studies on developing new therapeutic strategies, ovarian cancer remains one of the malignancies with the highest mortality rate. Therefore, new therapies, among them immunotherapy, are in demand. Recently, Kurman and Shih proposed a new classification of ovarian cancer. It is based on molecular and histopathological differences between tumors and divides them into two subtypes: type I and type II ovarian cancer. However, there are no studies exploring functions of an immune system in those types of ovarian cancer. We demonstrated that each type of ovarian cancer can induce a unique phenotype of dendritic cells and differentiation of Tregs, both associated with immunosuppressive function, which may be an obstacle while developing effective anticancer dendritic cell vaccination.

Dr Sudipto Das presented “Dissecting the epigenome of metastatic colorectal cancer”
The talk highlighted the experimental and analytical pipelines that have been established in the lab in order to develop single-base pair resolution DNA methylation maps derived from difficult-to-handle FFPE (Formalin Fixed Paraffin Embedded) tissue. We next applied these optimized approaches to primary tumour samples derived from 58 metastatic colorectal cancer (mCRC) patients and 10 matched normal samples, with an aim to unravel the methylation alterations across both conventional gene regulatory regions such as promoters as well as alternative regulatory elements such as enhancers of protein-coding and non-coding genes. Intriguingly, we have now identified a DNA methylation specific signature consisting of 377 differentially methylated loci that differentiates tumour and normal and in parallel provides us with three distinctive clinical clusters, which show a significant overlap with prognostically relevant consensus molecular sub-types of CRC. However, further work is warranted to ascertain the precise function of the signature as well as their role in predicting patient response to treatment.
The second part of the talk detailed about the ongoing genomics focused on “n-of-1” genomic studies which essentially involves atypical cancer presentation in patients, with the idea of understanding the biology of such unusual clinical phenotypes and moreover to identify any potential therapeutic targets.

MCT Lab Safari Activities

On November 14th, we welcomed almost 50 secondary school students at our Department for Lab Safari. The event was designed to encourage young people to consider a career in Science, Technology, Engineering, Maths and Medicine through hands-on experience and demonstrations prepared by our researchers. We developed 6 different workstations focused on Cancer biology and biomarkers, Drug Discovery, Multiple Sclerosis, Human Genetics and Immunology/Body clock

Tracy Robson

The event was opened by Prof. Tracy Robson, Head of MCT, sharing her career path in research and lessons that she learnt. Dr Avril Hutch, Head of RSCI Equality and Diversity Unit, also spoke about stereotypes in STEMM careers and having an awareness of unconscious bias.

Caragh Stapleton

Human Genetics
Our workstation was led by Caragh Stapleton, Katherine Benson and Edmund Gilbert, centered around human genetics. Our activity set out to teach participants about inherited traits and demonstrate how variation in our DNA influences our physical attributes. We investigated a number of traits including PTC taster (using PTC taste strips), colour blindness, widows peak, tongue rolling, attached earlobes, bent little finger, eye colour and red hair. Each participant noted whether or not they had the given trait and we then discussed the hypotheses of the genetic variants influencing the different traits.

Olga Piskareva and John Nolan

Cancer Biomarkers
Our workstation was led by Olga Piskareva and John Nolan. We explained the concept of biomarkers and the importance of discovering novel biomarkers for neuroblastoma, a childhood malignancy. Various chromosomal aberrations can be biomarkers of neuroblastoma aggressiveness. One of the strongest predictors of rapid neuroblastoma progression is MYCN status. We selected several neuroblastoma cell lines with known MYCN status providing a good illustration of biomarker’s quantity. Using immunodetection, we visualised the differences in the MYCN presence.

Mariana Patricia Cervantes Silva

Immunology/Body Clock
Our workstation was led by Annie Curtis, Mariana Patricia Cervantes Silva, George Timmons and Cathy Wyse. The theme of our activity was on the body clock and immune function. We discussed with the students why they get jet lag and what that has to do with their body clock. Students then moved to the first station where they got a chance to add colouring to macrophages, so we had red, yellow, blue and green macrophages and were able to look at their coloured macrophages under a microscope. Then they moved to the next station where they got to see the master clock which resides in the hypothalamus of the brain under a microscope. Finally, we displayed some images of activated macrophages and explained their function.

Stephanie Annett

Cancer Cell Biology
Our workstation lead by Sudipto Das, Gillian Moore and Stephanie Annett, focused on showcasing the various laboratory-based approaches applied regularly to identify and investigate novel gene or protein-based biomarkers of cancer progression. Within our workstation, we highlighted three key areas including how samples following biopsy from a cancer patient are used to construct tissue microarrays which are used for assessing the importance of a certain protein in cancer. This was followed by demonstrating a particular tissue culture-based method used to study anti-cancer properties of drugs and finally displaying an array of microscopic images of blood vessels developing in a given tumour.

Conor Duffy

Multiple Sclerosis
Our workstation was led by Claire McCoy, Remsha Afzal and Conor Duffy. The research focus at our lab safari station was Multiple Sclerosis (MS). We explained how the causes of MS are unknown, but that it is characterised by an influx of immune cells into the brain and spinal cord. Our research aims to investigate one type of immune cell called the macrophage. We aim to understand the damage macrophages cause in MS and if we can reverse this to provide an alternative tool for MS therapeutics. We really enjoyed explaining our research at the Lab Safari, where we showed students how MS impacts on brain function and showed them examples of activated macrophages under the microscope.

Padraig Norton

Drug Discovery
Our workstation was led by Dermot Cox and Padraig Norton. Students were given a brief history of drug discovery. Then they were introduced to the basic concepts of how a drug binds to its target and the different ways in which a drug can bind. Students were then shown a demonstration of molecular docking on a computer whereby a small molecule, or drug candidate, was virtually docked into a target binding site using the software.

Tracy Robson and Anne Grady

The event was led by Dr Maria Morgan, Anne Grady, Prof. Tracy Robson, Dr Olga Piskareva and John O’Brien. Guides on the evening included Olwen Foley, Camille Hurley, Mary Ledwith, Seamus McDonald and Shane O’Grady.

Orphan Drug Status for ALM201 for Ovarian Cancer

Over the last 10 years, Prof Tracy Robson has collaborated closely with Almac Discovery on the development of the therapeutic peptide, ALM201, based on her initial research into the anti-angiogenic properties of FKBPL.  ALM201 is part of the active anti-angiogenic domain of FKBPL and is a potent inhibitor of angiogenesis both in vitro and in vivo.  The technology was patented by Professor Robson and licensed to Almac Discovery.  Following collaborative pre-clinical work showing robust efficacy, this ‘first-in-class’ FKBPL-based antiangiogenic peptide has entered phase I/II clinical trials in the ovarian setting (EudraCT No: 2014-001175-31). Whilst the trial is ongoing, we have received exciting news that the U.S. Food and Drug Administration (FDA) has granted Orphan Drug Designation to the drug candidate ALM201 in the treatment of ovarian cancer. The FDA Office grants orphan drug designation to encourage the development of drugs for the prevention, or treatment of a medical condition affecting fewer than 200,000 people in the US and grants market exclusivity for a seven-year period if the sponsor complies with certain FDA specifications. Receiving Orphan Drug Designation for ovarian cancer underlines the fact that ALM201 may address a significant unmet medical need for this important disease.

Tracy Robson