Orphan Drug Status for ALM201 for Ovarian Cancer

Over the last 10 years, Prof Tracy Robson has collaborated closely with Almac Discovery on the development of the therapeutic peptide, ALM201, based on her initial research into the anti-angiogenic properties of FKBPL.  ALM201 is part of the active anti-angiogenic domain of FKBPL and is a potent inhibitor of angiogenesis both in vitro and in vivo.  The technology was patented by Professor Robson and licensed to Almac Discovery.  Following collaborative pre-clinical work showing robust efficacy, this ‘first-in-class’ FKBPL-based antiangiogenic peptide has entered phase I/II clinical trials in the ovarian setting (EudraCT No: 2014-001175-31). Whilst the trial is ongoing, we have received exciting news that the U.S. Food and Drug Administration (FDA) has granted Orphan Drug Designation to the drug candidate ALM201 in the treatment of ovarian cancer. The FDA Office grants orphan drug designation to encourage the development of drugs for the prevention, or treatment of a medical condition affecting fewer than 200,000 people in the US and grants market exclusivity for a seven-year period if the sponsor complies with certain FDA specifications. Receiving Orphan Drug Designation for ovarian cancer underlines the fact that ALM201 may address a significant unmet medical need for this important disease.

Tracy Robson

Decoding neuroblastoma microenvironment

MCT Research Talks – 24th April 2017

The main challenge in treating high-risk neuroblastoma is to combat tumour metastasis and development of resistance to multiple chemotherapeutic drugs. In the native tissue, cancer cells are surrounded by a three-dimensional (3D) microenvironment which provides biological and physical support and determines disease initiation, progression, patient prognosis and response to treatment. The conventional two-dimensional (2D) cell culture lacks this feature resulting in discrepancies between in vitro and in vivo results. Current neuroblastoma studies employ either 2D cell culture systems or murine models or alternatively a mix of both.

In collaboration with Dr Caroline Curtin and Prof Fergal O’Biren (TERG), we decided to bridge the gap between 2D culture and in vivo tumours in neuroblastoma research by developing a tissue-engineered cell culture model of neuroblastoma. This project is supported by a pilot grant from Neuroblastoma UK.

To understand what signalling pathways are activated in 2D, 3D and in vivo neuroblastoma models, we decided to look closer at the differences between conventional 2D neuroblastoma cells and their xenografts. This way we hope to find those targets that are activated in both tumour microenvironment and the 3D tissue engineered models. Ciara and Larissa have begun this search by profiling xenograft samples with a panel of antibodies. Ciara became particularly fascinated by the elevated levels of c-jun, TCF1 and LEF1 in cisplatin-resistant neuroblastoma xenografts suggesting that the development of cisplatin resistance in neuroblastoma may be accompanied by activation of the wnt/b-catenin pathway in vivo. Larissa identified that cisplatin-resistant neuroblastoma cells secrete chromogranin A (CgA) at levels higher that cisplatin-sensitive cells. CgA levels also correlated with increased vascularisation and volume of murine orthotopic neuroblastoma xenografts. Altogether it suggests that CgA can be used as a marker of neuroblastoma cell growth both in vitro and in vivo.

Olga Piskareva

Daffodil Day Bake sale – 24/03/2017

Daffodil day is marked on the annual calendar as one of the most significant days recognised for collecting donations from the Irish public to fund cancer research as well as various services provided by the Irish Cancer Society. Given the substantial amount of cancer researchers based in RCSI and in particular in MCT, a joint effort between the MCT and the Department of Physiology and Medical Physics was carried out to organise a “Bake sale” aimed to raise funds on this occasion. Dr. Sudipto Das (MCT) and Dr. Catriona Dowling (Physiology and Medical Physics) primarily organised the bake sale.

This year bake sale boasted a wide variety of baked goods prepared by various members of the staff including senior researchers and post-graduate students. One the main highlights of the bake sale was an auction for an exquisite chocolate biscuit cake with a daffodil theme baked by Ms. Ina Woods (Physiology and Medical Physics). The auction was successfully completed by selling the cake at the highest bid of 50 euro by Prof. Jochen Prehn. This year bake sale was a highly successful event, which effectively raised 800 euro with all proceeding going towards the Irish Cancer Society.

We thank everyone who made this fundraising event into an enjoyable and fruitful event.

 Reported by Sudipto Das

Irish Association For Cancer Research Meeting 2017

Irish Association for Cancer Research – Annual Meeting takes place at Newpark Hotel, Kilkenny on Thursday 23 and Friday 24 February 2017.

MCT cancer researchers secured oral presentations at different sessions. Prof Ray Stallings is a guest speaker at the Plenary Session focused on challenges in childhood cancers. He will be discussing ‘Modulation of neuroblastoma phenotype with epigenetically regulated miRNAs’.

Stephanie Annett will be giving a talk ‘FKBPL as a novel prognostic biomarker and therapeutic agent in high-grade serous ovarian cancer’ at Proffered Paper Session on Thursday morning. Two Irish Cancer Society funded PhD students will be discussing their findings at the Irish Cancer Society Scholar and Fellow Presentation session. Louise Walsh – ‘RNA sequencing identifies bromodomain proteins as a therapeutic strategy for invasive lobular carcinoma’ and Brian Mooney – ‘Expression of the cocaine- and amphetamine-regulated transcript recruits BAF chromatin remodelling complexes to the estrogen receptor’.

Good luck to our presenters!

Olga Piskareva

 

 

RCSI and ALMAC Discovery Partnership to Target the Root of Cancer: Cancer Stem Cells

A New Year…and a new challenge for MCT postdoctoral researcher Gillian Moore 

Between the post-Christmas blues, cold days and that painful wait for the next pay day, January can be a pretty long and gruelling month. This year, deviating from the norm, my January kicked off to a great start with my eagerly awaited move to RCSI. Before Christmas I was delighted to find out that I would be working alongside Prof. Tracy Robson in the Department of MCT and I’m really excited for 2017, and the new opportunities and challenges this postdoctoral research position has to offer.
An ongoing research collaboration between the Robson research group and leading oncology pharmaceutical company, ALMAC Discovery, resulted in the development of ALM201, an anti-cancer peptide-based drug currently in Phase I clinical trial for patients with solid tumours. ALM201 is structurally based on the naturally occurring protein, FKBPL. FKBPL and its peptide-derivative, ALM201, have demonstrated potent anti-angiogenic properties, and notably, a unique ability to target cancer stem cells. Targeting of cancer stem cells has arguably become the Holy Grail of cancer therapy in recent years. Within the mass of every tumour there is a subpopulation of cancer cells with the ability to self-regenerate. It is this cell population that are responsible for the initiation and propagation of a tumour, and recurrence of disease following resistance to chemo and/or radiotherapy. If we can robustly target the bulk of the tumour in addition to any residual cancer stem cells then we can potentially circumvent progression and indeed recurrence of disease.

Left to right: Dr Graham Cotton, Senior R&D Group Leader, Almac Discovery; Prof Tim Harrison, Vice President Discovery Chemistry, Almac Discovery; Prof Tracy Robson, Head of Molecular & Cellular Therapeutics, RCSI; Dr Gillian Moore, postdoctoral researcher (Robson Group); Seamus Browne, RCSI Head of Industry Partnerships; Dr Stephanie Annett, postdoctoral researcher (Robson Group).

Ovarian cancer is one of the top ten most common cancers in women and is associated with a poor prognosis, primarily due to the late presentation of disease. In the coming months, the next stage in the clinical trial of ALM201 will involve the treatment of a cohort of ovarian cancer patients. Recent, unpublished preclinical data in the Robson group has indicated promising anti-cancer stem cell efficacy of ALM201 in the ovarian cancer setting. I am interested in understanding the molecular mechanisms that underpin this observed anti-cancer stem cell activity of ALM201. A new phase of academic research funding from ALMAC Discovery will enable us to carry out this work. While the specific targeting of ovarian cancer stem cells is a relatively new research field, it has potential to provide much needed alternate treatment options for this aggressive tumour type and may have implications for other malignancies.

It’s great to be part of MCT at RCSI and I’m looking forward to sharing our research findings as the project develops.

Microcalcifications in breast cancer: Exploring their molecular formation and biological significance

MCT Research Talks – 23th January 2017

Survival rates for breast cancer have risen significantly over the past few decades, in large part due to a considerable increase in the number of tumours detected via mammography at an early, more easily-treated stage. The presence of microcalcifications on a mammogram constitutes an important diagnostic clue to radiographers, with approximately 30% of invasive breast tumours and up to 90% of cases of ductal carcinoma in situ (DCIS) being detected by the presence of calcifications. Some studies have also suggested that the presence of calcifications may act as a prognostic factor, as patients presenting with breast tumours with associated calcifications have a worse prognosis than those without.
Despite their importance in breast cancer diagnosis, the exact mechanism by which microcalcifications are formed remains largely unexplored. Our group previously established the first in vitro model of mammary cell microcalcification (1) which we have recently extended to the human the breast cancer cell line MDA-MB-231. When cultured with a cocktail of osteogenic-reagents for a prolonged period, these cells produce deposits of calcium phosphate.

Figure 1. Alizarin Red S stained MDA-MB-231 cell monolayer, grown in DMEM (Control) or DMEM supplemented with osteogenic cocktail and dexamethasone (OC+Dex). Red staining indicates presence of calcified deposits.

Using a combination of histological staining, quantitative measurement of calcium content, alkaline phosphatase activity and analysis of gene expression, we can monitor the changes in cell phenotype leading to onset of mineralisation. The nature of our model allows for easy manipulation of cell culturing conditions and by adding various inhibitory compounds or cytokines to our culture media, we can identify the key pathways and targets necessary for calcification production. In doing so, we hope to build up a comprehensive understanding of the cellular and molecular basis underlying the formation of these important diagnostic clues.

Recommended reading:

Cox RF, Hernandez-Santana A, Ramdass S, McMahon G, Harmey JH, Morgan MP.  Microcalcifications in breast cancer: novel insights into the molecular mechanism and functional consequence of mammary mineralisation. Br J Cancer. 106(3):525-37 PMID: 22233923 (Jan 2012)

Shane O’Grady, Maria Morgan

The role of the anorectic neuropeptide CART in breast cancer

MCT Research Talks – 16th January 2017

Breast cancer currently affects 1 in 8 women in Ireland, with over 3000 reported cases each year. The most common subtype of breast cancer, known as Estrogen Receptor positive (ER+) breast cancer, accounts for roughly 70% of all breast cancers diagnosed. The most common drug used to treat this disease (Tamoxifen) works by preventing estrogen from driving the growth of the cancer cells, however, roughly 1 in 3 women will be resistant to tamoxifen treatment, highlighting the need for further research into this field. A number of years ago, though mining of publically available datasets, we identified a gene known as CART to be a marker of poor prognosis in ER+ breast cancer. CART (The Cocaine- and Amphetamine-Regulated Transcript) is a neuropeptide involved in processes such as feeding and drug reward. We have identified that high expression of CART in breast cancer patients correlates with poor overall survival, and also a poor response to tamoxifen. We also demonstrated that CART could influence the activity of ERα in a ligand-independent manner [1]. Our current research focuses on combining proteomic (mass-spectrometry) and transcriptomic (RNA-seq) approaches in order to fully understand the role CART plays in ER+ breast cancer. We aim to modulate the expression of these identified targets in order to investigate whether any of these targets could slow the growth of breast cancer cells in vitro. Combining these approaches, we hope to identify novel therapeutic opportunities for patients with ER+ breast cancer.

Recommended reading:

[1] DJ Brennan, DP O’Connor et al., The Cocaine- and Amphetamine-Regulated Transcript mediates ligand-independent activation of ERα, and is an independent prognostic factor in node-negative breast cancer. Oncogene 2012, 31, 3483–3494; doi:10.1038/onc.2011.519

Brian Mooney, Darran O’Connor

MCT student, Lisa Dwane, talks about her research and recent achievements

cropped-RCSI-logo-1.jpgFollowing completion of my Pharmacology degree in UCD, I began a PhD in breast cancer research under the supervision of Dr. Darran O’Connor, a career I have always been very determined to follow. My research is focused on endocrine-driven breast cancer and understanding the molecular mechanisms that drive this subtype of cancer. Currently, half of breast cancer patients that receive anti-endocrine therapies will relapse, so there is an urgent need for the identification of novel therapeutic targets. Our research is focused on the deubiquitinating enzyme USP11, which we believe plays a key role in driving endocrine-driven breast cancer. When we silence USP11 in vitro, we see a reduction in estrogen receptor activity and cell viability. During the final year of my PhD, I hope to elucidate the mechanism by which USP11 plays this role, and determine the prognostic relevance of USP11 in breast cancer. This could potentially lead to a better understanding of endocrine-driven breast cancer and with further validation, USP11 may represent a novel therapeutic target.

Lisa Dwane presents her research at the Irish Cancer Society’s Researcher of the Year Award. december, 1st, 2016. TCD
Lisa Dwane presents her research at the Irish Cancer Society’s Researcher of the Year Award. December, 1st, 2016. TCD

As a pharmacologist, I was thrilled to win best oral presentation at the Irish Association of Pharmacologists Annual Meeting! The standard of talks throughout the day were excellent, with a wide range of topics explored. I was also a finalist for the Irish Cancer Society’s Researcher of the Year Award, which took place 1st December at Trinity College Dublin. The purpose of the evening was to communicate our research to a lay audience, which proved more difficult than expected! Although I didn’t take home the award it was a very enjoyable evening, and the experience was invaluable. As scientists it is important for us to share and communicate our research with the general public and this was a skill I gained from the night!

Winners and finalists for the Irish Cancer Society’s Researcher of the Year Award
Winners and finalists for the Irish Cancer Society’s Researcher of the Year Award

Targeting drug resistance in neuroblastoma

MCT Research Talks 5th December 2016  rcsi-logo

Cancer Genetics Group

Neuroblastoma is a childhood cancer caused by the abnormal growth and development of neural crest cells (1). The disease commonly affects children age 5 years or younger. Approximately 50% of children have cancer cells that have migrated to distant sites in the body and formed tumour masses at the time of diagnosis. The main challenge in treating neuroblastoma is to combat tumour metastasis and development of resistance to multiple chemotherapeutic drugs. Despite major advances in available therapies, children with drug resistant and/or recurrent neuroblastoma have a dismal outlook with 5 year survival rates of less than 20%.

Research of Prof. Stallings lab is focused on elucidating the molecular events that contribute to the development and progression of neuroblastoma (2).  A major area of research involves the identification and functional analysis of microRNAs that contribute to chemotherapy resistance in neuroblastoma, along with the development of microRNA-mediated therapeutics.

The main research projects were presented at the Departmental meeting on December, 5th.

Microscopic examination of drug resistant neuroblastoma cells KellyCis83. Cells look healthy and can be kept for another 2-3 days to form a more dense population.
Microscopic examination of drug resistant neuroblastoma cells KellyCis83. Cells look healthy and can be kept for another 2-3 days to form a more dense population.

The first talk by Olga Piskareva has explored how current concepts of development of drug resistant, tumour microenvironment and cell-to-cell communication can be applied to reconstruct relapsed or drug resistant neuroblastoma microenvironment using 3D tumour models.

TEM analysis of exosome fractions. Vesicle sizes range from 30 to 200nm in Kellycis83 (A) and Kelly (B) neuroblastoma cells. (C) EVs which appear larger than the 100 nm upper limit for exosomes (D) Close up of the dried exosome preps identify the typical bowl shaped morphology associated with TEM images of exosomes. (3)
TEM analysis of exosome (EV) fractions. Vesicle sizes range from 30 to 200nm in Kellycis83 (A) and Kelly (B) neuroblastoma cells. (C) EVs which appear larger than the 100 nm upper limit for exosomes (D) Close up of the dried exosome preps identify the typical bowl shaped morphology associated with TEM images of exosomes (3).

The second talk was presented by Ciara Fallon. Ciara is our StAR PhD student. She has selected the project ‘Exosome mediated drug resistance in high-risk neuroblastoma’ as her first choice.  At the moment she is doing her lab placement in Cancer Genetics group as a part of the RCSI StAR PhD Programme. Built upon results of the former BioAt PhD Student Ross Conlon (3), Ciara’s project is focused on the validation of exosomal miR-548d-5p as a regulator of cell viability and proliferation in cisplatin sensitive and resistant neuroblastoma cell lines.

Finally, the last, but not least was a talk by John Nolan. His talk entitled “MiRNA-124-3p Reduces Cell Viability in Cisplatin Resistant Neuroblastoma Cell Models” was focused on the results submitted to the Royal College of Surgeons for the Degree of Doctor of Philosophy. His studies cover the development of cross resistance to other drugs, investigation of common altered proteins and signaling pathways in cisplatin resistant neuroblastoma cell lines and validation of miRNA that can target these proteins and stop cell proliferation. Part of the results was published last year in Cancer Letters (4).

The work carried out in Prof. Stallings lab is supported through the research grant to Prof. Ray Stallings and PhD fellowship to John Nolan by National Children’s Research Centre, Crumlin Hospital. ncrc

References:

  1. Davidoff, A. M. Neuroblastoma. 2012 Semin. Pediatr. Surg. 21, 2–14.
  2. Piskareva, O., Stallings, R. Neuroblastoma. In: Epigenetic Cancer Therapy edited by Grey S., Elsevier 2015.
  3. Conlon, R., Analysis of microRNA bearing exosomes in models of drug resistant neuroblastoma. PhD Thesis. Dublin: Royal College of Surgeons in Ireland; 2015.
  4. Piskareva, O., Harvey, H., Nolan, J., Conlon, R., Alcock. L., Buckley, P., Dowling, P., O’Sullivan, F., Bray, I., Stallings, T.L. The development of cisplatin resistance in neuroblastoma is accompanied by epithelial to mesenchymal transition in vitro. 2015 Cancer Letters, 364:142-55.

Reported by Olga Piskareva