MCT Research Forum – Friday 25th January at 3.00pm

Professor David Ray

“Circadian control of inflammation; stories from the lung”

David trained in general internal medicine in North West England, and obtained a PhD from the University of Manchester. He was a research fellow at UCLA for two years, working on neuroendocrine-immune interaction, before returning to the UK, and obtaining a GSK fellowship to work on glucocorticoid action, and sensitivity in inflammatory disease. He was promoted to Professor of Medicine at the University of Manchester in 2005, and went on to study nuclear receptor and circadian biology in inflammation, and energy metabolism. This work attracted Wellcome Investigator and MRC programme grant support. David is a passionate advocate of research training, serving on the MRC clinical fellowship panel for seven years, three as deputy chair.

Circadian mechanisms regulate most mammalian physiology, with particular importance in the regulation of innate immunity, through the macrophage in particular, and energy metabolism, regulating liver, adipose and muscle. These circuits are also regulated by a number of nuclear receptors, which show a striking interdependency on the circadian machinery; some having ligand availability regulated by the clock, others varying in expression level through the day. We have employed a range of approaches to address the physiological importance of the circadian: nuclear receptor system, ranging from population genetics, experimental medicine studies, CRISPR engineered mice, and cell biology. These approaches have discovered how the important dimension of time regulates metabolism, and coordinates diverse tissues to deliver optimal organismal performance. Importantly, we are identifying how external stressors can decouple these systems, with deleterious effects.

Dr. Judith Coppinger

“Increased extracellular vesicles mediate inflammatory signalling in Cystic Fibrosis”

Judith obtained her PhD from Department of Clinical Pharmacology, RCSI in 2004 before undertaking postdoctoral training at the Scripps Research Institute, San Diego, on new folding mechanisms in Cystic Fibrosis. In 2011, she joined the University of California, San Diego as a faculty member before receiving an SFI award and returning to Ireland. In 2013 she became a principal investigator at University College Dublin where she set up basic/translational research programs in Cystic Fibrosis and Cancer (lung/breast). Judith’s overall research has focused on using omics-based approaches to decipher protein interaction networks dysregulated in disease and identify new therapeutics to target these pathways. Her research projects include examining the therapeutic restoration of CFTR using kinase inhibitors in Cystic Fibrosis and examining exosomes in regulating inflammatory signalling in Cystic Fibrosis at the National Children’s Research Centre. Other projects include investigating BAG3 as a therapeutic target regulating signalling transduction pathways in breast/lung cancer subtypes. Dr. Coppinger is a senior lecturer at the RCSI and a principal investigator at National Children’s Research Centre since 2017.

George Timmons

“Mitochondria – A link between innate immunity, metabolism, and the clock”

George Timmons is a PhD student of the Curtis Clock Lab, led by Dr. Annie Curtis and is part of the Department of Molecular and Cellular Therapeutics and Tissue Engineering Research Group at RCSI. George began his PhD in October 2016 and is now in the 3rd year of his studies. The Curtis Clock Lab focuses on circadian immunometabolism – a new field which looks into the relationship between the molecular clock, cellular metabolism, and immune responses. Specifically, George’s project is investigating how the core clock gene Bmal1 impacts upon mitochondrial metabolism and how these metabolic changes can impact upon the inflammatory response of macrophages.

When: January 25th 2019 at 3.00pm – 4.30pm

Where: Cheyne Lecture Theatre

Tea Coffee and Cookies sponsored by Biosciences will be at 2.30pm

Targeting drug resistance in neuroblastoma

MCT Research Talks 5th December 2016  rcsi-logo

Cancer Genetics Group

Neuroblastoma is a childhood cancer caused by the abnormal growth and development of neural crest cells (1). The disease commonly affects children age 5 years or younger. Approximately 50% of children have cancer cells that have migrated to distant sites in the body and formed tumour masses at the time of diagnosis. The main challenge in treating neuroblastoma is to combat tumour metastasis and development of resistance to multiple chemotherapeutic drugs. Despite major advances in available therapies, children with drug resistant and/or recurrent neuroblastoma have a dismal outlook with 5 year survival rates of less than 20%.

Research of Prof. Stallings lab is focused on elucidating the molecular events that contribute to the development and progression of neuroblastoma (2).  A major area of research involves the identification and functional analysis of microRNAs that contribute to chemotherapy resistance in neuroblastoma, along with the development of microRNA-mediated therapeutics.

The main research projects were presented at the Departmental meeting on December, 5th.

Microscopic examination of drug resistant neuroblastoma cells KellyCis83. Cells look healthy and can be kept for another 2-3 days to form a more dense population.
Microscopic examination of drug resistant neuroblastoma cells KellyCis83. Cells look healthy and can be kept for another 2-3 days to form a more dense population.

The first talk by Olga Piskareva has explored how current concepts of development of drug resistant, tumour microenvironment and cell-to-cell communication can be applied to reconstruct relapsed or drug resistant neuroblastoma microenvironment using 3D tumour models.

TEM analysis of exosome fractions. Vesicle sizes range from 30 to 200nm in Kellycis83 (A) and Kelly (B) neuroblastoma cells. (C) EVs which appear larger than the 100 nm upper limit for exosomes (D) Close up of the dried exosome preps identify the typical bowl shaped morphology associated with TEM images of exosomes. (3)
TEM analysis of exosome (EV) fractions. Vesicle sizes range from 30 to 200nm in Kellycis83 (A) and Kelly (B) neuroblastoma cells. (C) EVs which appear larger than the 100 nm upper limit for exosomes (D) Close up of the dried exosome preps identify the typical bowl shaped morphology associated with TEM images of exosomes (3).

The second talk was presented by Ciara Fallon. Ciara is our StAR PhD student. She has selected the project ‘Exosome mediated drug resistance in high-risk neuroblastoma’ as her first choice.  At the moment she is doing her lab placement in Cancer Genetics group as a part of the RCSI StAR PhD Programme. Built upon results of the former BioAt PhD Student Ross Conlon (3), Ciara’s project is focused on the validation of exosomal miR-548d-5p as a regulator of cell viability and proliferation in cisplatin sensitive and resistant neuroblastoma cell lines.

Finally, the last, but not least was a talk by John Nolan. His talk entitled “MiRNA-124-3p Reduces Cell Viability in Cisplatin Resistant Neuroblastoma Cell Models” was focused on the results submitted to the Royal College of Surgeons for the Degree of Doctor of Philosophy. His studies cover the development of cross resistance to other drugs, investigation of common altered proteins and signaling pathways in cisplatin resistant neuroblastoma cell lines and validation of miRNA that can target these proteins and stop cell proliferation. Part of the results was published last year in Cancer Letters (4).

The work carried out in Prof. Stallings lab is supported through the research grant to Prof. Ray Stallings and PhD fellowship to John Nolan by National Children’s Research Centre, Crumlin Hospital. ncrc

References:

  1. Davidoff, A. M. Neuroblastoma. 2012 Semin. Pediatr. Surg. 21, 2–14.
  2. Piskareva, O., Stallings, R. Neuroblastoma. In: Epigenetic Cancer Therapy edited by Grey S., Elsevier 2015.
  3. Conlon, R., Analysis of microRNA bearing exosomes in models of drug resistant neuroblastoma. PhD Thesis. Dublin: Royal College of Surgeons in Ireland; 2015.
  4. Piskareva, O., Harvey, H., Nolan, J., Conlon, R., Alcock. L., Buckley, P., Dowling, P., O’Sullivan, F., Bray, I., Stallings, T.L. The development of cisplatin resistance in neuroblastoma is accompanied by epithelial to mesenchymal transition in vitro. 2015 Cancer Letters, 364:142-55.

Reported by Olga Piskareva