Congratulations to Remsha Afzal!

The Molecular & Computational Biology Symposium 2018 was held at the Conway Institute of Biomolecular and Biomedical Research in University College Dublin (UCD). This symposium is jointly organised annually by UCD PhD students from the Systems Biology and Infection Biology programs.

This event showcased the thriving local research and scientific community that is present at UCD and in Dublin to Irish and international academic researchers as well as industrial companies. It also featured internationally renowned keynote speakers from a wide range of fields within the sphere of computational and molecular biology to present their research.

Remsha Afzal from Dr. Claire McCoy’s lab was selected to be a speaker at this year’s symposium where she won a prize for best presentation for her topic “The role of IL-10 and arginase in immunometabolism”

See more about the symposium at: http://compmolbiosymp.ucd.ie/

Omics in Disease Diagnosis and Therapy

Our new ‘thematic’ MCT Research Seminar Series was launched on November 8th with the opening talks on ‘Omics in Disease Diagnosis and Therapy’. The aim of the new format, with presentations spanning several research groups and diseases to facilitate knowledge exchange and foster cross-collaboration.

Dr Sudipto Das – Genomic and epigenomic approaches as a vital discovery platform

The talk broadly focused on various genomic and epigenomic platforms that have been established in the lab enabling us to interrogate the various alterations that underpin disease-associated features. Using specific clinical case examples, the talk demonstrated how the whole genome, exome and shallow sequencing have allowed us to further our understanding about atypical clinical presentation of known cancer types. Furthermore, the application of targeted methylation sequencing on FFPE tissue and it’s further utilization to stratify metastatic colorectal and heart failure patients using deep learning approaches was also explained.

Dr Katie Benson – Integrating Genomics into the Clinical Care Pathway

Next-generation sequencing is quickly replacing single gene tests in clinical practice. The integration of these genomic tests has been slow as a result of barriers including data processing and interpretation, handling of incidental findings, storage of data and access to genetics services and clinical geneticists. The Epilepsy Lighthouse project, building on the success of the epilepsy electronic patient record (EPR), has used eHealth technologies to facilitate the integration of genomics results into the epilepsy clinic. This has facilitated multidisciplinary team discussions of patients and their genomics results. As part of this project, we have sequenced 97 adult and paediatric Irish epilepsy patients and successfully provided a genetic diagnosis in 24% of cases.

Dr Chiara DeSanti – MicroRNA function in health and disease

Since the sequencing of the human genome back in 2001, non-coding RNAs have been shown to play a critical role in regulating gene expression at a transcriptional, post-transcriptional and translational level. Among the several classes of non-coding RNAs, our group is interested in microRNAs (miRNAs), small non-coding RNA molecules (18-25 nt in length) firstly discovered in C.elegans as negative regulator of gene expression through binding to the 3’untranslated region (UTR) of a target mRNA and inhibiting its translation and/or leading to mRNA degradation. MiRNAs expression was found altered in all human diseases so far, where they have been proposed as diagnostic/prognostic biomarkers and as key players in the pathogenic process itself due to their pleiotropic ability to bind hundreds of mRNAs simultaneously. Therefore, it’s hugely important to define true miRNAs::mRNAs interactions to understand their biological role and the pathways that they affect, in the overall aim of designing therapeutic strategies to enhance or block miRNAs. In order to do so, online target predictions is usually the first step, but experimental validation is needed to verify the in silico-predicted interaction. Several methods have been developed to address this issue, and they can be indirect (i.e. transcriptomic and proteomic changes are measured after over-expression/depletion of a miRNA), or direct (i.e. miRNA::mRNA complexes are captured and physical interactions are assessed, including the RCSI-developed method called miR-CATCH). Gold standard for the validation of high-throughput screening is the luciferase assay, again routinely used in several laboratories across the College. In our group, we are focussing on the role of miR-155 in macrophage polarisation in the context of multiple sclerosis (MS), a neurodegenerative disease where proinflammatory macrophages infiltrate the central nervous system and promote chronic inflammation and damage to myelin sheath. Our hypothesis, supported by preliminary data by our PI Dr MCoy and other researchers, is that miR-155 is promoting the proinflammatory state in macrophages and therefore blocking it would reduce inflammation and alleviate disease progression. Although proof of concepts for antimiR-155 therapy have been attempted in a mouse model of MS (EAE model), we are hoping to boost its efficacy by improving the delivery to macrophages of more stable versions of antimiR-155 or target-site blockers that minimise off-targets effects.

 

 

 

Well done Dr Mariana Cervantes!

Dr Mariana Cervantes (MCT) was successful in obtaining funding from The National Council of Science and Technology (CONACYT) from Mexico under the Support for Postdoctoral Researchers Abroad Linked to the Consolidation of Research Groups scheme. This funding will support her postdoctoral research in circadian biology in the Curtis-Clock Lab, under the guidance of Dr Annie Curtis. The grant titled “Impact of circadian control on mitochondrial metabolism in Dendritic Cells and their implications in vaccination” was funded for $48,000 for 2 years. In this project, Dr. Cervantes will unravel the mechanisms by which the molecular clock regulates dendritic cell function with the objective to improve vaccination strategies.

This grant is awarded to Mexican Postdoctoral researchers who wish to carry out high-level research in prestigious universities worldwide.

MCT Hosts Intergenerational Day Lab Tour

On Thursday 4 October, the Equality, Diversity and Inclusion (EDI) unit welcomed almost 30 family members of staff to RCSI St Stephen’s Green campus for the first-ever RCSI Intergenerational Day. Throughout the day, the guests had the opportunity to learn about a variety of activities at RCSI. MCT hosted a lab tour where guests were introduced to several MCT Principal Investigators who discussed their work and demonstrated how their research is carried out. Four stations focusing on the themes of Breast Cancer, Novel Cancer Therapies, Multiple Sclerosis and Circadian Rhythm and its Impact on Health were featured, led by Dr Sudipto Das, Dr Maria Morgan, Prof Tracy Robson, Dr Claire McCoy and Dr Annie Curtis. Guests were guided around the labs by the MCT Operations Team John O’Brien, Olwen Foley, Anne Grady, Mary Ledwith and Seamus McDonald. Scientists Stephanie Annett; Gillian Moore; Conor Duffy; Chiara DeSanti; Mariana  Cervantes Silva, Richard Carroll and George Timmons also volunteered on the day.
Prof Gianpiero Cavalleri contributed to the day’s activities with a talk on the Irish DNA Atlas. The MCT research projects presented were a hit with our audience evident by the number of attendees, their level of engagement and thoughtful questions. Guests included relatives of MCT staff including Mr Joseph Tighe father of Orna and Mrs McDonald & Curtis – mothers of Seamus and Annie respectively. Julia Morrow of the EDI unit commented that ‘between the MCT lab visit and Gianpiero’s talk, more than one guest commented they wish they could go back and have a more science-oriented career!’ It’s never too late we say!
Written by Maria Morgan

A new mechanism by which the body clock controls the inflammatory response from macrophages

The Curtis lab from MCT in partnership with the O’Neill lab at Trinity College have revealed insights into how the body clock controls the inflammatory response, which may open up new therapeutic options to treat excess inflammation in conditions such as asthma, arthritis and cardiovascular disease. By understanding how the body clock controls the inflammatory response, we may be able to target these conditions at certain times of the day to have the most benefit. These findings may also shed light on why individuals who experience body clock disruption such as shift workers are more susceptible to these inflammatory conditions.
The body clock, the timing mechanism in each cell in the body, allows the body to anticipate and respond to the 24-hour external environment. Inflammation is normally a protective process that enables the body to clear infection or damage, however, if left unchecked can lead to disease. The new study published in the Proceedings of the National Academy of Sciences (PNAS), a leading international multidisciplinary scientific journal.
Dr Annie Curtis, Research Lecturer in the Department of Molecular and Cellular Therapeutics at RCSI and senior author, explained that: “Macrophages are key immune cells in our bodies which produce this inflammatory response when we are injured or ill. What has become clear in recent years is that these cells react differently depending on the time of day that they face an infection or damage, or when we disrupt the body clock within these cells”.

Some members of the Curtis lab involved in this project: Dr. Richie Carroll (far left), Dr. Annie Curti,  Dr. Mariana Cervantes, George Timmons (far right)

Dr. Jamie Early, the first author on the study, said: “We have made a number of discoveries into the impact of the body clock in macrophages on inflammatory diseases such as asthma and multiple sclerosis. However, the underlying molecular mechanisms by which the body clock precisely controls the inflammatory response were still unclear. Our study shows that the central clock protein, BMAL1 regulates levels of the antioxidant response protein NRF2 to control the inflammatory response from macrophages.
“The findings although at a preliminary stage, offers new insights into the behaviour of inflammatory conditions such as arthritis and cardiovascular disease which are known to be altered by the body clock”, added Dr Early.
Funded by Science Foundation Ireland, the research was undertaken in collaboration between RCSI, Trinity College Dublin and the Broad Institute in Boston, USA.

Here is the  link to the paper titled ” Circadian clock protein BMAL1 regulates IL-1β in macrophages via NRF2

Annie Curtis

Mechanobiology – the ‘dark matter’ of cancer and immunity

MCT research seminar

The way we act very much depends on our surroundings; not the least on the weather conditions. In a similar way, cells in our body very much depend on what is going on around them. It has been known for a long time that the specific niches in which cells reside impact on the cellular phenotype. While most researchers have looked at chemical signals – either released into the environment or reflecting the composition of the extracellular matrix – it is becoming increasingly clear that also physical properties, such as stiffness and topography, are sensed by a wide variety of cells and influences their decisions.

It is our pleasure to welcome Prof Viola Vogel this Monday at RCSI for the MCT research seminar.

July 16th, 4.00 pm, Albert Lecture Theatre “How does the mechanobiology of extracellular matrix steer cancer progression?

Prof Vogel and her laboratory at ETH Zurich have pioneered the field of mechanobiology. Her earlier work focused on how proteins act as mechanochemical switches to transduce mechanical signals from the ECM into the cell. More recent work addresses the importance of tissue strain in the development of tumours. Prof Vogel will also share her latest results on how physical constraints affect decision making of macrophages.

Anyone who is interested in getting a different viewing angle on cancer and immunity is heartily invited! To steer your personal decision making towards attending the talk, refreshments will be served from 3.30 pm on in the Atrium.

Ingmar Schoen

Circadian Immunometabolism. What it is and why your immune system will not thank you for eating curry chips at 2am after the disco

MCT Research Seminar

The Curtis Clock laboratory has a real interest in metabolism, which is a really broad term and means different things to different people. We are interested in how different fuels (sugars , fats, proteins) are metabolised (broken down) within immune cells, and if this has an impact on how that immune cell functions. The key metabolic organelle within a cell is the mitochondria, that is where the breakdown parts of these fuels end up and are converted to energy (ATP). We are a Clock lab, so our raison d’etre (so to speak) is to unravel how different fuels are metabolised within immune cells at different times of day and how the mitochondria work at different times of day, and how that impacts the response of the immune cell at that time of day. This is what we now term “Circadian Immunometabolism”. This leads me on nicely to our title, before the age of electricity, our forefathers never ate in the middle of the night, we believe that our immune system becomes dysfunctional when it has to deal with food during a time when we now believe our immune system is undergoing repair and restoration. So to begin to get at these big questions, Mariana and George have two exciting projects ongoing. Mariana, who is a postdoc in the laboratory, will show how our mitochondria are changing over the course of the day in dendritic cells (these are cells of the innate immune system and are the ones that feed information to our adaptive immune system) (see Fig. 1). The title of her talk is

“Those mitochondria have got rhythms! Mitochondrial activity and antigen processing in dendritic cells is dependent on the molecular clock protein BMAL1”.

George, a PhD student in the lab, is dissecting down into the cells to figure out how the electron transport chain (the side of action for ATP synthesis) is controlled by the clock. The title of his talk is

“Metabolic pathways in a macrophage lacking a molecular clock”

Mitochondria have a very important role in cellular metabolism, their morphology is completely different during the day (elongated) (yellow) or during the night (fragmented) (blue) nucleus (gray)

Annie Curtis

More details of what we do can be found here: www.Curtisclocklab.com

FcgRIIa –an attractive target to control immune response

MCT Research Talks

Our group is a drug discovery lab currently working on the development of a novel Fc gamma receptor IIa inhibitors. FcgRIIa is a low affinity receptor for Fc portion of immunoglobulin G (IgG) and is implicated in a variety of conditions that are still mainly untreatable, such as rheumatoid arthritis, lupus, immune thrombocytopenia, sepsis. FcgRIIa is widely expressed by human innate immune cells, and is the only Fc gamma receptor found on human platelets.

Mainly over-stimulation of the FcgRIIa receptor in these conditions that leads to the progression of the disease. For example, in sepsis the platelets get activated via FcgRIIa in response to bacteria present in the blood, which results in thrombocytopenia and disseminated immune coagulopathy. This causes, not only internal haemorrhage but also formation of blood clots that block peripheral blood vessels leading to sepsis-associated limb loss, heart attacks and/or strokes. Using a targeted approach, such as pharmacophore modelling, our group has developed a small molecule compound that effectively blocks FcgRIIa-mediated platelet aggregation in vitro. In agreement with the chosen targeted approach, this compound was shown to bind to the FcgRIIa directly and possesses specificity for the FcgRII subgroup of the Fcg receptors.

Ultimately, this compound has a great potential to be used for treatment of other FcgRIIa-mediated auto-immune conditions, such as rheumatoid arthritis, lupus and an array of immune thrombocytopenia conditions.

Prof Dermot Cox, Dr Tatiana Devine and Padraig Norton

MCT Success at RCSI Research Day 2018

Dear All,
I wanted to congratulate everyone for their significant contributions to recent RCSI Research Day.  MCT’s presence was strong on the day with a number of keys oral and poster presentations from across the four MCT research pillars. 
In particular, a huge congratulations to:
 Dr Joan Ni Gabhann for the Most Highly Cited RCSI Senior Authored Paper with Industry Collaboration 2012-2016 for her paper ‘Btk regulates macrophage polarization in response to lipopolysaccharide’.
 Rebecca Watkin (PI Prof Steven Kerrigan) and Edmund Gilbert (PI Prof Gianpiero Cavalleri)  who jointly won the best postgraduate oral presentation, sponsored by Bio-Sciences Limited, for their presentations on ‘S.aureus induced miR330-3p expression triggers abnormal permeability in an ex-vivo 2D model of sepsis’ and ‘The Irish DNA Atlas: Revealing Fine-Scale Population Structure and History within Ireland’, respectively.
 Prof James O’Donnell (ICVB) who won the Clinician CEO Innovation Award.
 Dr Ingmar Schoen for his novel Invention Disclosure.
 Camille Hurley (PI Dr Darran O’Connor) Edmund Gilbert (PI Prof Gianpiero Cavalleri)  and Conor Duffy (PI Claire McCoy) for winning inaugural RCSI International Secondment Awards.
 Finally, well done to Dr Claire McCoy for giving an inspiring and heartfelt presentation about her SFI President of Ireland Future Research Leader Award.
 Well done all. A fantastic achievement for MCT.
 Best wishes,
Tracy