MCT Hosts Intergenerational Day Lab Tour

On Thursday 4 October, the Equality, Diversity and Inclusion (EDI) unit welcomed almost 30 family members of staff to RCSI St Stephen’s Green campus for the first-ever RCSI Intergenerational Day. Throughout the day, the guests had the opportunity to learn about a variety of activities at RCSI. MCT hosted a lab tour where guests were introduced to several MCT Principal Investigators who discussed their work and demonstrated how their research is carried out. Four stations focusing on the themes of Breast Cancer, Novel Cancer Therapies, Multiple Sclerosis and Circadian Rhythm and its Impact on Health were featured, led by Dr Sudipto Das, Dr Maria Morgan, Prof Tracy Robson, Dr Claire McCoy and Dr Annie Curtis. Guests were guided around the labs by the MCT Operations Team John O’Brien, Olwen Foley, Anne Grady, Mary Ledwith and Seamus McDonald. Scientists Stephanie Annett; Gillian Moore; Conor Duffy; Chiara DeSanti; Mariana  Cervantes Silva, Richard Carroll and George Timmons also volunteered on the day.
Prof Gianpiero Cavalleri contributed to the day’s activities with a talk on the Irish DNA Atlas. The MCT research projects presented were a hit with our audience evident by the number of attendees, their level of engagement and thoughtful questions. Guests included relatives of MCT staff including Mr Joseph Tighe father of Orna and Mrs McDonald & Curtis – mothers of Seamus and Annie respectively. Julia Morrow of the EDI unit commented that ‘between the MCT lab visit and Gianpiero’s talk, more than one guest commented they wish they could go back and have a more science-oriented career!’ It’s never too late we say!
Written by Maria Morgan

A new mechanism by which the body clock controls the inflammatory response from macrophages

The Curtis lab from MCT in partnership with the O’Neill lab at Trinity College have revealed insights into how the body clock controls the inflammatory response, which may open up new therapeutic options to treat excess inflammation in conditions such as asthma, arthritis and cardiovascular disease. By understanding how the body clock controls the inflammatory response, we may be able to target these conditions at certain times of the day to have the most benefit. These findings may also shed light on why individuals who experience body clock disruption such as shift workers are more susceptible to these inflammatory conditions.
The body clock, the timing mechanism in each cell in the body, allows the body to anticipate and respond to the 24-hour external environment. Inflammation is normally a protective process that enables the body to clear infection or damage, however, if left unchecked can lead to disease. The new study published in the Proceedings of the National Academy of Sciences (PNAS), a leading international multidisciplinary scientific journal.
Dr Annie Curtis, Research Lecturer in the Department of Molecular and Cellular Therapeutics at RCSI and senior author, explained that: “Macrophages are key immune cells in our bodies which produce this inflammatory response when we are injured or ill. What has become clear in recent years is that these cells react differently depending on the time of day that they face an infection or damage, or when we disrupt the body clock within these cells”.

Some members of the Curtis lab involved in this project: Dr. Richie Carroll (far left), Dr. Annie Curti,  Dr. Mariana Cervantes, George Timmons (far right)

Dr. Jamie Early, the first author on the study, said: “We have made a number of discoveries into the impact of the body clock in macrophages on inflammatory diseases such as asthma and multiple sclerosis. However, the underlying molecular mechanisms by which the body clock precisely controls the inflammatory response were still unclear. Our study shows that the central clock protein, BMAL1 regulates levels of the antioxidant response protein NRF2 to control the inflammatory response from macrophages.
“The findings although at a preliminary stage, offers new insights into the behaviour of inflammatory conditions such as arthritis and cardiovascular disease which are known to be altered by the body clock”, added Dr Early.
Funded by Science Foundation Ireland, the research was undertaken in collaboration between RCSI, Trinity College Dublin and the Broad Institute in Boston, USA.

Here is the  link to the paper titled ” Circadian clock protein BMAL1 regulates IL-1β in macrophages via NRF2

Annie Curtis

RCSI StAR International Summer Internship Programme

This summer RCSI welcomed our very first cohort of ten international students as part of our Inaugural RCSI StAR International Summer Internship Programme. Students came from Washington University, Cornell University, University of California, Berkeley, University of Oregon, Queen’s University Belfast, University of Liverpool and TCD to spend two months in laboratories around RCSI. To mark the end of the programme we held a research symposium where students show-cased their research and experience. It was a huge success, with Kieran White, University of Liverpool winning the overall prize for the best presentation on ‘Nanotherapeutics for Glioblastoma’ (supervisor Professor Annett Byrne). Kieran has already accepted a PhD position with Prof Byrne on her GlioTrain programme. Thanks to Prof Darran O’Connor and Prof Tracy Robson (MCT) for leading this initiative.

We will also be running the StAR summer internship next year – stay tuned. Here is the link to last year’s programme which will be updated within the next month: http://www.rcsi.ie/starugprogramme

 

Research Summer School Programme 2018

A fantastic few weeks of research is now completed, culminating in the Wrap Up Symposium on Friday, July 27th, 2018. This year not only had we our own students from RCSI but we also welcomed undergraduate students from Hoshi University, Tokyo, Japan; Soochow University, Suzhou, China; the RCSI StAR Summer Internship Programme; FutureNeuro and the Faculty of Dentistry. There was great stuff being done on a number of fronts, not only in the labs but also out on our clinical sites as well as an increase in the number of students involved in some fab systematic reviews. It was incredible to see the breadth of research done by our undergraduate students in such a short period of time. It is a credit to them, their research supervisors and teams. We eagerly look forward to next year’s programme.

Some insights from student’s perspective:

“It was educational in a different way; I expected to learn more about the disease I am working with get an outcome but instead, I feel like I am better equipped to analyse papers and data and methods that are very useful in the future as a clinician.”

“Amazing! Big thanks to Gill and Sarah O’Neill”

“It was a knowledgeable and valuable learning experience that was never dull in any way.”

Reported by Sarah O’Neill

Many common psychiatric conditions are deeply connected on a genetic level

Global collaborations can help answer fundamental questions that are resistant even to national endeavours. Drs Mark McCormack and Christopher Whelan (MCT) and Professors Kieran Murphy (Psychiatry) and John Waddington (Emeritus, MCT) have participated in an important international study, the results of which have just been published in Science [2018 Jun 22;360(6395)] under the auspices of the Brainstorm Consortium. This landmark study, ‘Analysis of shared heritability in common disorders of the brain‘, analyses genetic data assembled globally from 265,218 patients having one of 25 neuropsychiatric disorders and 784,643 control participants, together with 1,191,588 individuals having 17 other, potentially relevant characteristics. Psychiatric disorders share an unexpected degree of common genetic risk: for example, genes associated with risk for schizophrenia are also associated, to varying extents, with significant risk for bipolar disorder, major depressive disorder, autism spectrum disorder, attention deficit/hyperactivity disorder, obsessive-compulsive disorder and anorexia nervosa; in contrast, neurological disorders such as epilepsy, stroke, Parkinson’s disease, migraine and multiple sclerosis appear more genetically distinct from one another. This highlights the importance of common genetic variation as a risk factor across psychiatric disorders.

https://www.irishtimes.com/news/health/many-psychiatric-disorders-have-common-genetic-links-major-study-1.3539455

 John L. Waddington PhD, DSc, FBPhS, MRIA
Professor Emeritus

 

Circadian Immunometabolism. What it is and why your immune system will not thank you for eating curry chips at 2am after the disco

MCT Research Seminar

The Curtis Clock laboratory has a real interest in metabolism, which is a really broad term and means different things to different people. We are interested in how different fuels (sugars , fats, proteins) are metabolised (broken down) within immune cells, and if this has an impact on how that immune cell functions. The key metabolic organelle within a cell is the mitochondria, that is where the breakdown parts of these fuels end up and are converted to energy (ATP). We are a Clock lab, so our raison d’etre (so to speak) is to unravel how different fuels are metabolised within immune cells at different times of day and how the mitochondria work at different times of day, and how that impacts the response of the immune cell at that time of day. This is what we now term “Circadian Immunometabolism”. This leads me on nicely to our title, before the age of electricity, our forefathers never ate in the middle of the night, we believe that our immune system becomes dysfunctional when it has to deal with food during a time when we now believe our immune system is undergoing repair and restoration. So to begin to get at these big questions, Mariana and George have two exciting projects ongoing. Mariana, who is a postdoc in the laboratory, will show how our mitochondria are changing over the course of the day in dendritic cells (these are cells of the innate immune system and are the ones that feed information to our adaptive immune system) (see Fig. 1). The title of her talk is

“Those mitochondria have got rhythms! Mitochondrial activity and antigen processing in dendritic cells is dependent on the molecular clock protein BMAL1”.

George, a PhD student in the lab, is dissecting down into the cells to figure out how the electron transport chain (the side of action for ATP synthesis) is controlled by the clock. The title of his talk is

“Metabolic pathways in a macrophage lacking a molecular clock”

Mitochondria have a very important role in cellular metabolism, their morphology is completely different during the day (elongated) (yellow) or during the night (fragmented) (blue) nucleus (gray)

Annie Curtis

More details of what we do can be found here: www.Curtisclocklab.com

Harnessing FKBPL to target cancer and vascular disease

Pathological blood vessel formation (angiogenesis), or the inability of endothelial cells to perform their physiological function (endothelial dysfunction), are defining features of disease. The endothelium actively controls vessel integrity, vascular growth and remodelling, tissue growth and metabolism, immune responses, cell adhesion, angiogenesis, haemostasis and vascular permeability.  It is, therefore, a vital and largely unexploited target for novel therapies.

Prof Tracy Robson’s team have identified and characterised a novel anti-angiogenic protein, FK506 binding protein like – FKBPL, significantly advancing our understanding of the anti-angiogenic process, in particular, how tumours recruit blood vessels to support their growth. This led to a collaborative study with Almac Discovery to develop therapeutic peptides based on FKBPL’s active domain to explore their potential in cancer by targeting the ability of tumours to recruit blood vessels to grow, invade and metastasise beyond the site of the primary tumour.  The team are also testing the ability of these peptides to sensitise tumours to current therapies and to target cancer stem cells that lead to the onset of resistance and/or recurrent disease.   Importantly, these studies led to a ‘first in man’ phase I clinical in cancer patients where the clinical candidate drug, ALM201, was very well tolerated over a wide range of doses.  Prof Robson’s team (Dr Stephanie Annett and Dr Gillian Moore) will discuss this data together with new data suggesting a strong role for FKBPL in vascular endothelial dysfunction and possible implications therefore in other diseases associated with vascular disease.

Graham Cotton, Tim Harrison, Tracy Robson, Gillian Moore, Seamus Browne and Stephanie Annett (left to right)

Multiple Sclerosis Research Network – 30th May 2018

In honour of World MS Day on the 30 May 2018; the Molecular and Cellular Department in the Royal College of Surgeons Ireland along with Trinity College Dublin, MS Society Ireland and Novartis have joined together to create an MS Research Network event.

The event will comprise of three parts; the first is a World MS Day Fundraiser located in the main foyer of RCSI between 8.30 – 10 am, please come and support the #bringinguscloser campaign. The second is a Researcher Forum for scientists working on MS in Ireland, with the aim to establish an official researcher network to enhance collaboration, visibility, and congeniality. The third is a Public Event to launch the most recent MS Society report and inform the public of the importance and relevance of MS research that is conducted in Ireland.

All are welcome to these events (see below details). To register for the day event, email Harriet Doig at harrietd@ms-society.ie, to register for the evening event, email Emma Kinnane at emma.kinnane@novartis.com.

Written and organised by Claire McCoy

World MS Day Fundraiser – Royal College of Surgeons, Main Foyer. 8.30 – 10am

Researcher Forum – Royal College of Surgeons in Ireland, Tutorial Room 2/3
12.00 Meet and Greet (lunch is provided)
12.30 Harriet Doig (MS Society Ireland). ‘The value of a research network in Ireland’
12.40 Claire McCoy (RCSI). ‘The importance of microRNA-155 in Multiple Sclerosis and my contribution to an MS research network’
13.10 Eric Downer (Trinity College Dublin). ‘Exploring Exercise & Cannabinoids as Therapeutic Targets in MS’
13.40 Una Fitzgerald (NUIG). ‘My research and how I can contribute to an MS research network’

14.15 Tea Break

14.45 Jill Moffat (Queen’s University Belfast). ‘The Northern Ireland MS network – challenges and opportunities’
15.00 Denise Fitzgerald (Queen’s University Belfast) ‘My Research and how the Northern Ireland MS network benefits it’
15.30 Mary Fitzsimons (Beaumont Hospital). ‘How to build an MS electronic patient record, lessons from the epilepsy lighthouse project’
15.45 Alexis Donnelly (Patient advocate). ‘How patients can help build MS research’

Public Event – Trinity Biomedical Sciences Institute, Trinity College Dublin
18.00 MS Society Report Launch
18.20 Clinician – Orla Hardiman (Beaumont Hospital and Trinity College Dublin)
18.40 Researcher – Claire McCoy (RCSI)
19.00 Patient Advocate – Joan Jordan (Patient Advocate)

Development of Novel Treatments for Sepsis

MCT Research Talks

Sepsis is a major challenge in the intensive care unit, where it is one of the leading causes of death. It arises unpredictability and can progress rapidly. Globally there are an estimated 30 million cases of sepsis each year which results in more than 8 million deaths in adults and 5 million deaths in children. Of those who do survive a further one third will die in the following 12 months, those who survive often face life-long consequences, such as new physical, mental and cognitive problems. Although this number is gathered from several sources, all content to the fact that it is likely an underestimate and therefore may very well be the leading cause of mortality worldwide. Currently, there are no approved drugs on the market to control the underlying pathophysiology that triggers the dysregulated host response to sepsis and therefore the management plan focuses on reducing the infection through the use of aggressive intravenous antibiotic therapy and source control. Therefore the cardiovascular infection research group is investigating a therapeutic option that acts early to prevent bacteria binding to the host vascular endothelial cell in the first place would be commercially advantageous as it will prevent the infection from progressing to septic shock and a life-threatening situation as a result of multi-organ failure.

Prof. Steve Kerrigan’s research team

Funded by: Science Foundation Ireland, Enterprise Ireland, Irish Research Council, British Heart Foundation, Health Research Board, Wellcome Trust