Diagnostic gene sequencing in adults with epilepsy and intellectual disability

MCT Research Talks – 20th February 2017

Sinead Heavin reports

Sinead Heavin, PhD Post-Doctoral Researcher

Epilepsy is a common neurological disorder that affects ~40,000 people in Ireland. There are many different types of seizures which are caused by uncontrolled electrical impulses in the brain. Anti-epileptic drugs control seizures for ~50% of people with epilepsy but up to ~30% of patients remain uncontrolled despite treatment with multiple drugs. Epilepsy is caused by a number of factors include stroke, trauma and infections. However, more recently we have learned that epilepsy can be caused by genetic mutations. Some epilepsies are heritable while others arise de-novo. Many patients with an intellectual disability (ID) also have epilepsy. Many of these patients lack a specific diagnosis due to limited testing and available investigations. We sequenced a cohort of 99 adult patients with epilepsy and ID on a custom gene panel of ~150 genes. A likely pathogenic variant was identified in 20 patients in 19 different genes, including SCN1A, DCX and DEPDC5, well-known epilepsy genes. Furthermore, we identified copy number variants in two patients which are likely causative. Further work is needed to investigate the phenotype-genotype correlations identified in this study and any potential treatment options that may arise.

Kay McKeon

8 February 2017

An informal, private reception was held in the College for Kay McKeon on Wednesday, 8th February, to mark her retirement and contribution to RCSI after 39 years.

Kay joined Clinical Pharmacology in 1978 and with Prof. Kevin O’Malley was responsible for commissioning the then ‘new’ laboratories. She continued to play a fundamental role in developing Clinical Pharmacology’s laboratories and building the department’s reputation through the 1980s and 1990s into RCSI’s premier research department.

She played a central role in assisting Kevin O’Malley’s successor, Prof. Des Fitzgerald, in securing RCSI’s first large HEA-PRTLI and SFI grants, working long hours with the intricate details and logistics for such applications.

During this period, Kay was seconded to oversee the development of the RCSI Centre for Human Proteomics, before returning to base and seeing in another period of change on the departure of Prof. Fitzgerald and formation of Molecular & Cellular Therapeutics (MCT) from the Departments of Biochemistry and Clinical Pharmacology under Profs. David Croke and John Waddington as HODs; she played a key role in the management of MCT as a member of it’s Executive.

At a more personal level, Kay was someone who carried out her responsibilities in a genuinely supportive and politically astute manner; many appreciated her sensitivity, in assisting all ‘new staff’ settle in and in maintained balance and stability in overseeing laboratories with up to 100 staff.

Yet in addition to this, Kay also found the time to contribute more broadly to RCSI, particularly its philanthropic activities, for example, the Old Folks Christmas Lunch for those living in the vicinity of the College and related activities; an all-too-rare rare combination of professionalism and altruism.

An important part of what Clinical Pharmacology and MCT has achieved serves as her legacy to the College, in making MCT what it is today and the entity that Prof. Tracy Robson has recently inherited.

Hebrews 6 (10 … 19): ‘For God would not be so unjust as to forget all that you did for love of his name, when you rendered service to his people, as you still do … It is like an anchor for our lives, an anchor safe and sure’.

Kay has been an ‘anchor safe and sure’ across four decades. We thank you, Kay, for everything you’ve done for Clinical Pharmacology, MCT, RCSI and the community at large and wish you well for the future.

miR-155, a master regulator of the immune response

MCT Research Talks – 13th February 2017

Dr. Claire McCoy

Background

I have recently arrived as a Lecturer in Biochemistry/Immunology within the Molecular and Cellular Therapeutics Department at RSCI. I am a dedicated and passionate Biochemist/Immunologist who obtained a BA (Mod) in Biochemistry from Trinity College Dublin in 2001.

Dr Claire McCoy

In 2006, I completed my PhD at the University of Dundee, Scotland after which I conducted my postdoctoral training in innate immunology with Prof Luke O’Neill. In 2010, I received a Marie Curie Mobility Fellowship where I gained scientific independence and re-located to the Hudson Institute of Medical Research in Melbourne, Australia. In 2014, I was awarded an Australian NHMRC project grant enabling me to lead an independent research team, conducting my research specifically on the regulation of microRNAs in innate immune cells, with a particular focus on inflammatory diseases such as Multiple Sclerosis.

Specific Research
My lab aims to understand how microRNAs regulate inflammation in disease. Our particular focus is how the pro-inflammatory microRNA, miR-155, plays a fundamental role in one immune cell subset called the macrophage. Macrophages are the sentinel cells of our immune system and quickly respond to infection to clear invading microbes. However, in chronic inflammatory diseases and autoimmunity, the presence of macrophages largely contributes to the damage, tissue destruction and symptoms associated with these diseases. Our research has shown that miR-155 is a key driver of this response. My lab aims to identify the molecular and functional mechanisms that underpin inflammatory macrophages, with the aim that miR-155 inhibition will lead to real therapeutic potential.
Multiple Sclerosis (MS) is a progressive degenerative disease where the prevalence in Ireland far exceeds the global average. Disease onset occurs between 20-40 years, an age critically affecting working and family life. To this day, there is no known cause and no cure for MS. Although, the early disease can be managed by current drug therapies, there is no treatment at the later progressive stages of disease, and no known treatments to repair the damage caused to the central nervous system. My research aims to uncover the role of macrophages in MS, and the contribution of miR-155 in this effect.

Awards
Claire McCoy is the recipient of a prestigious Marie Curie International fellowship and an Investigator Project Grant from the National Health and Medical Research Council (NHMRC), Australia. Altogether my research has attracted €800K in both national and international funding. I have published >21 highly cited and seminal publications in Nature Reviews Immunology, Nucleic Acids Research, Journal of Leukocyte Biology and Journal of Biological Chemistry. I am book editor for Springer Science, USA, as well as peer reviewer for international journals and funding agencies.

I will be talking about my research at 12pm TR4, Monday 13th Feb. The title of my talk will be ‘miR-155, a master regulator of the immune response’.

ALL WELCOME!

Dr. Claire McCoy

Lecturer in Biochemistry/Immunology,
Royal College of Surgeons in Ireland,
123 St Stephens Green,
Dublin 2,
Ireland.
Tel: 01-4025017
Email: clairemccoy@rcsi.ie

The Immune-Clock laboratory of Dr. Annie Curtis, a recent recruit to RCSI

MCT Research Talks – 30th January 2017

Last week’s departmental talks encompassed a Deep Dive into Clock biology in Macrophages affecting the Inflammatory Response. This area is the focus of the Immune-Clock laboratory of Dr. Annie Curtis, a recent recruit to RCSI.

Jamie Early, my PhD student

Jamie Early (PhD student of the Curtis Lab) currently residing in the Luke O’Neill Laboratory presented his findings on the role of the circadian clock in suppressing inflammation in macrophages and if the anti-oxidant transcription factor and redox sensor NRF2 plays a role. His talk was titled ‘The macrophage clock is a key controller of the anti-oxidant and inflammatory response via the transcription factor Nrf2’.

Second up, we had Mariana Cervantes (PhD student and visiting scientist from the Instituto Politecnico Nacional (IPN) in Mexico) present her talk titled ‘The macrophage clock is having a profound impact on mitochondrial dynamics- what are the implications for inflammation?’

Mariana Cervantes

Mariana is interested in how mitochondria alter their morphology, either fusing together to form networks or fragmenting into smaller units termed fission. She is trying to uncover if the clock is regulating this process and if so what are the implications for the inflammatory response.

This work is part of a collaboration between RCSI and  Luke O’Neill laboratory at TCD and is funded through Science Foundation Ireland

A pharmacogenomic exploration of adverse drug reactions in epilepsy (PGXOME)

For most people with epilepsy, long term treatment with anti-epileptic drugs (AEDs) are necessary to prevent the seizure, and 40% do not respond to the first line of AED, leading to an often lifelong odyssey of trial and error towards effective treatment that is often not found. Epilepsy is primarily treated using AEDs, but these are associated with a considerable risk for adverse drug reactions (ADRs), some of which have been shown to have a genetic predisposition. For example, the genetic variant HLA-A*3101 is a common risk factor for rash and severe blistering skin reactions with the drug carbamazepine (Tegretol) in Europeans. However there are few other predictors of some more common ADRs.

Dr. Mark McCormack

The EpiPGX Consortium was established to identify genetic biomarkers of epilepsy treatment response from patient centres across Europe. The EpiPGX Consortium has generated genetic profiles on over 8000 patients with matching detailed drug response and medical histories. In order to investigate the links between genetic profiles and ADRs in epilepsy, Dr. Mark McCormack will travel to UMC Utrecht, the Netherlands for one year on a  Marie-Skłodowska-Curie Fellowship from the European Commission.

The aim of this fellowship is to identify clinically useful genetic variants to predict adverse reactions to AEDs. This will help optimize personalized treatment, limit the trial and error approach of AED choice, and thus improve medication safety and quality of life in epilepsy.

RDS Primary Science Fair

Dr. Maria Morgan reports

On the 12th January 2017 I had the pleasure of attending the RDS Primary Science Fair which runs alongside the BT Young Scientist and Technology Exhibition. Although given the title of ‘Head Judge’ the Fair is non-competitive and provides a platform for showcasing STEM investigations (science, technology, engineering and maths) undertaken by primary school classes across Ireland.

Judges briefing at the RDS Primary Science Fair

Children exhibited their whole-class projects which included topics ranging from ‘How can we assist the declining bee population in our local area?’ to ‘Ambidextrous! Can I train my other hand?’. One of my favourites was ‘Why do we like Pink Lady apples so much?’ which demonstrated higher levels of sugar in Pink Ladies compared to other apple varieties. At another stand I was given the opportunity to have my lung capacity measured using a 5L water cooler bottle and some garden tubing (well how could I say no!). It’s such a privilege to attend the Fair each year where the positivity and enthusiasm for science means you come away with a feel-good scientific glow and a reassurance that the future of STEM in Ireland is in excellent little hands!
For more information on the RDS Primary Science Fair go to: www.rds.ie/Ireland-s-Philanthropic-Society/Our-Work/Projects/RDS-Primary-Science-Fair#sthash.z8tSvgG1.dpuf

Microcalcifications in breast cancer: Exploring their molecular formation and biological significance

MCT Research Talks – 23th January 2017

Survival rates for breast cancer have risen significantly over the past few decades, in large part due to a considerable increase in the number of tumours detected via mammography at an early, more easily-treated stage. The presence of microcalcifications on a mammogram constitutes an important diagnostic clue to radiographers, with approximately 30% of invasive breast tumours and up to 90% of cases of ductal carcinoma in situ (DCIS) being detected by the presence of calcifications. Some studies have also suggested that the presence of calcifications may act as a prognostic factor, as patients presenting with breast tumours with associated calcifications have a worse prognosis than those without.
Despite their importance in breast cancer diagnosis, the exact mechanism by which microcalcifications are formed remains largely unexplored. Our group previously established the first in vitro model of mammary cell microcalcification (1) which we have recently extended to the human the breast cancer cell line MDA-MB-231. When cultured with a cocktail of osteogenic-reagents for a prolonged period, these cells produce deposits of calcium phosphate.

Figure 1. Alizarin Red S stained MDA-MB-231 cell monolayer, grown in DMEM (Control) or DMEM supplemented with osteogenic cocktail and dexamethasone (OC+Dex). Red staining indicates presence of calcified deposits.

Using a combination of histological staining, quantitative measurement of calcium content, alkaline phosphatase activity and analysis of gene expression, we can monitor the changes in cell phenotype leading to onset of mineralisation. The nature of our model allows for easy manipulation of cell culturing conditions and by adding various inhibitory compounds or cytokines to our culture media, we can identify the key pathways and targets necessary for calcification production. In doing so, we hope to build up a comprehensive understanding of the cellular and molecular basis underlying the formation of these important diagnostic clues.

Recommended reading:

Cox RF, Hernandez-Santana A, Ramdass S, McMahon G, Harmey JH, Morgan MP.  Microcalcifications in breast cancer: novel insights into the molecular mechanism and functional consequence of mammary mineralisation. Br J Cancer. 106(3):525-37 PMID: 22233923 (Jan 2012)

Shane O’Grady, Maria Morgan

Irish Association of Pharmacologists Announcement

Dear IAP Members

I wanted to update you on developments over the past number of weeks.

I can report that we have made progress with an application for the IAP to join the European Association for Clinical Pharmacology & Therapeutics (EACPT -https://www.eacpt.eu/who-we-are-2/), who responded very positively and who have said that they will put our application to their executive committee at their next meeting in April. We look forward in hope to the last blank space in Western Europe being filled in blue very soon (see: https://www.eacpt.eu/members/national-society-affiliated-to-eacpt/).

We have also applied for membership of the Federation of European Pharmacological Societies (EPHAR -http://www.ephar.org/home.html), who have also responded very positively to our initial enquiries.

We are currently working on the IAP website and expect to be able to update you on developments shortly.

In the meantime, we would very much appreciate your promoting the newly constituted IAP to those who you think would be interested in becoming members. We anticipate that the benefits will soon include membership of European federations and the opportunities for contact with European colleagues.

Thomas

Prof. Thomas Walther
President
Irish Association of Pharmacologists

Recent MCT Papers In High Impact Journals With Commentaries

CNV and Schizophrenia Working Groups of the Psychiatric Genomics Consortium; Psychosis Endophenotypes International Consortium. [including Waddington J]. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat Genet. 2017 Jan;49(1):27-35. PMID: 27869829

John Waddington writes about his group’s participation in a global research endeavour that has produced a series of articles in Nature, Nature Genetics and Nature Neuroscience on the pathobiology of schizophrenia The Psychiatric Genomics Consortium (PGC) unites investigators around the world to conduct meta- and mega-analyses of genome-wide genomic data on psychiatric disorders, to achieve goals that cannot be reached by individual or indeed most national programmes. Its website (www.med.unc.edu/pgc) provides information about the organization, implementation and results of the PGC. This consortium began in early 2007 and has rapidly become a collaborative confederation of investigators from 38 countries. There are samples from more than 900,000 individuals currently in analysis, and this number is growing rapidly. The PGC is the largest consortium and the largest biological experiment in the history of psychiatry.
From 2007-11, the PGC focused on several disorders, from schizophrenia through to autism, attention-deficit hyperactivity disorder, bipolar disorder and major depressive disorder. These now extend to large studies of eating disorders, substance use disorders, obsessive-compulsive disorder/Tourette’s Syndrome and post-traumatic stress disorder. Initially, the PGC focused on common single nucleotide polymorphisms (SNPs) but has expanded to include copy number variation (CNVs) and uncommon/rare genetic variation. The PGC has received funding from many sources. It has relied heavily on the goodwill of its members and their donated effort, with the establishment andgenotyping of its primary studies funded by a wide range of national, international and commercial entities.

We have been involved in the Schizophrenia Working Group of the PGC for many years, from its progenitor organisation the International Schizophrenia Consortium, primarily through substantial funding from the Wellcome Trust for five centres across the island of Ireland (one led by us) to contribute DNA from well characterised patient populations to a national dataset curated at Trinity College Dublin. This dataset has then been shared with the PGC. The resultant studies have evolved from the first investigation of CNVs in schizophrenia (3,391 cases, 3,181 controls; Nature 2008; 455: 237-41), through to the largest GWAS study on schizophrenia undertaken to date (36,989 cases, 113,075 controls; Nature 2014; 511: 421-7), to this most recent publication (21,094 cases, 20,227 controls; Nature Genetics 2017; 49: 27-35), the largest study of CNVs in schizophrenia yet undertaken. This has been, and continues to be, an exemplary, rewarding journey of global collaboration to illuminate the pathobiology of the intractable human condition that is psychotic illness.

 


Chion A, O’Sullivan JM, Drakeford C, Bergsson G, Dalton N, Aguila S, Ward S, Fallon PG, Brophy TM, Preston RJ, Brady L, Sheils, O, Laffan M, McKinnon TA, O’Donnell JS. N-linked glycans within the A2 domain of von Willebrand factor modulate macrophage-mediated clearance. Blood. 2016 Oct 13;128(15):1959-1968. PMID: 27554083.

Jamie Marie O’Sullivan writes about this study:

Von Willebrand factor (VWF) is a large multimeric plasma sialoglycoprotein that plays two critical roles in normal haemostasis. First it mediates platelet adhesion to exposed subendothelial collagen at sites of vascular injury. Second, VWF acts as a carrier molecule for procoagulant factor VIII, thereby protecting it from premature proteolytic degradation and clearance. Deficiency of either VWF (von Willebrand disease, VWD) or FVIII (Haemophilia A) is associated with a significant bleeding phenotype. Conversely, elevated plasma levels of the VWF-FVIII complex constitute a dose dependent risk factor for both venous and arterial thrombosis. Consequently, understanding the factors that determine how plasma VWF levels are regulated is not only of basic scientific interest, but also direct clinical importance.

Despite the fact that type 1 von Willebrand disease constitutes the most common inherited bleeding disorder worldwide, the mechanisms underlying the reduced plasma VWF levels in these patients is not well established. However, emerging evidence suggests that reduced circulatory half-life may be important in a significant number of patients. However the biological mechanisms underlying VWF clearance from the plasma remains elusive. Work is on-going within the group of Professor James O’Donnell to investigate the importance of specific VWF domains in modulating half-life in vivo.

In the October issue of Blood the group published novel findings demonstrating a critical role for VWF glycosylation in determining its circulatory half-life. By examining the clearance of various truncated fragments of VWF, we observed that the A domains of VWF contain a receptor-recognition site important in mediating VWF binding to macrophages in vitro, and in regulating VWF clearance by macrophages in vivo. Furthermore site-directed mutagenesis demonstrated a key role for N-linked glycan structures at position N1515 and N1574 within the A domains in protecting VWF against macrophage-mediated clearance. More specifically, the protective effect of these large complex N-linked glycan structures may be due to steric hindrance, with shielding of cryptic binding sites for macrophage clearance receptor low density lipoprotein receptor-related protein 1 (LRP1).

Defining the mechanisms underpinning VWF clearance is not only of direct translational relevance, but may also have important implications for the development of novel therapeutic agents with significant commercial appeal. For example, the estimated cost of clotting factor concentrates to the global market is predicted to exceed €10 billion per annum by 2020. It is therefore perhaps unsurprising that major pharmaceutical companies (including Baxter®, Bayer®, Novo Nordisk® and Octapharma®) are actively pursuing development of longer-acting coagulation factor products (including VWF and FVIII) as a priority. Our novel findings further scientific understanding in relation to the molecular mechanisms involved in regulating coagulation glycoprotein clearance from plasma.


McGettrick AF, Corcoran SE, Barry PJ, McFarland J, Crès C, Curtis AM, Franklin E, Corr SC, Mok KH, Cummins EP, Taylor CT, O’Neill LA, Nolan DP. Trypanosoma brucei metabolite indolepyruvate decreases HIF-1α and glycolysis in macrophages as a mechanism of innate immune evasion. Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):E7778-E7787. PMID: 27856732.

Dr. Anne McGettrick and Sarah Corcoran at Trinity College Dublin lead a team of researchers including Dr. Annie Curtis (now at MCT) on a study that uncovered how the African parasites trypanosomes evade the immune system in their hosts, The biochemists have unearthed a metabolic by-product of trypanosome activity known as indolepyruvate modulates the inflammatory response of the host and evades immune detection. This discovery may offer excellent possibilities for developing anti-trypanosome drugs and therapies because inhibiting the production of indolepyruvate may be key in fighting the parasite. Full details can be found here https://www.tcd.ie/news_events/articles/solving-a-putrid-camel-pee-riddle-may-aid-millions-affected-by-sleeping-sickness/7385

The cerebrovascular nature of neurological disorders

MCT Research Talks – 9th January 2017

Guest speaker: Dr. Matthew Cambell

At MCT, we are very excited to announce our visiting guest speaker Dr Matthew Campbell from the Smurfit Institute of Genetics in Trinity College Dublin. Dr Campbell is a prestigious and young emerging principal investigator in Ireland who has made significant contributions in the fields of Neuroscience, Inflammation and the Vasculature System, core research areas that are also conducted within the MCT department.

Dr. Matthew Cambell

Dr Campbell aims to elucidate and address questions associated with dysfunctional vasculature within neural tissues. Recently published in Nature Medicine, Dr Campbell made a significant discovery uncovering the role of the NLRP3 inflammasome in the development of one of the most common forms of central retinal blindness, AMD. His lab is now pursuing a range of novel therapeutic solutions for the treatment of AMD and recently reported on the translational potential of human IL-18 as an immunotherapy.

Dr Campbell interests also focus on the blood-brain barrier, where he recently reported for the first time on the auto-regulated diffusion of amyloid-β in Alzheimer’s disease. More recently, he has identified molecular mechanisms underlying the development of chronic traumatic encephalopathy (CTE) to concussive injuries in athletes and military personnel. He spearheads a project involving the use of RNA interference (RNAi) to modulate levels of distinct tight junction proteins at the blood-brain barrier. This led to a novel form of patented technology that was termed “Neural Barrier Modulation” which could have broad applications for a range of neurological conditions.

Dr Campbell is the recipient of Ireland’s most prestigious prize for young researchers, the “President of Ireland Young Researcher Award (PIYRA)“, in addition to the international Genentech/ARVO fellowship. He will be speaking today on ‘the cerebrovascular nature of neurological disorders’ at 12 pm in Tutorial Room 2/3. Lunch will be provided for all after the talk.

All welcome!!

Written by Dr Claire McCoy, Lecturer in Biochemistry, MCT, RCSI.